summaryrefslogtreecommitdiff
path: root/source/know/concept/rabi-oscillation/index.md
diff options
context:
space:
mode:
Diffstat (limited to 'source/know/concept/rabi-oscillation/index.md')
-rw-r--r--source/know/concept/rabi-oscillation/index.md41
1 files changed, 21 insertions, 20 deletions
diff --git a/source/know/concept/rabi-oscillation/index.md b/source/know/concept/rabi-oscillation/index.md
index 07f8b25..2fcdea8 100644
--- a/source/know/concept/rabi-oscillation/index.md
+++ b/source/know/concept/rabi-oscillation/index.md
@@ -15,11 +15,11 @@ In quantum mechanics, from the derivation of
we know that a time-dependent term $$\hat{H}_1$$ in the Hamiltonian
affects the state as follows,
where $$c_n(t)$$ are the coefficients of the linear combination
-of basis states $$\Ket{n} \exp(-i E_n t / \hbar)$$:
+of basis states $$\Ket{n} e^{-i E_n t / \hbar}$$:
$$\begin{aligned}
i \hbar \dv{c_m}{t}
- = \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1}{n} \exp(i \omega_{mn} t)
+ = \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1}{n} e^{i \omega_{mn} t}
\end{aligned}$$
Where $$\omega_{mn} \equiv (E_m \!-\! E_n) / \hbar$$
@@ -31,10 +31,10 @@ in which case the above equation can be expanded to the following:
$$\begin{aligned}
\dv{c_a}{t}
- &= - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{b} \exp(- i \omega_0 t) \: c_b - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{a} \: c_a
+ &= - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{b} e^{-i \omega_0 t} \: c_b - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{a} c_a
\\
\dv{c_b}{t}
- &= - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{a} \exp(i \omega_0 t) \: c_a - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{b} \: c_b
+ &= - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{a} e^{i \omega_0 t} \: c_a - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{b} c_b
\end{aligned}$$
Where $$\omega_0 \equiv \omega_{ba}$$ is positive.
@@ -44,10 +44,10 @@ states that the diagonal matrix elements vanish, leaving:
$$\begin{aligned}
\dv{c_a}{t}
- &= - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{b} \exp(- i \omega_0 t) \: c_b
+ &= - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{b} e^{-i \omega_0 t} \: c_b
\\
\dv{c_b}{t}
- &= - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{a} \exp(i \omega_0 t) \: c_a
+ &= - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{a} e^{i \omega_0 t} \: c_a
\end{aligned}$$
We now choose $$\hat{H}_1$$ to be as follows,
@@ -56,7 +56,7 @@ sinusoidally oscillating with a spatially odd $$V(\vec{r})$$:
$$\begin{aligned}
\hat{H}_1(t)
= V \cos(\omega t)
- = \frac{V}{2} \Big( \exp(i \omega t) + \exp(-i \omega t) \Big)
+ = \frac{V}{2} \Big( e^{i \omega t} + e^{-i \omega t} \Big)
\end{aligned}$$
We insert this into the equations for $$c_a$$ and $$c_b$$,
@@ -64,16 +64,16 @@ and define $$V_{ab} \equiv \matrixel{a}{V}{b}$$, leading us to:
$$\begin{aligned}
\dv{c_a}{t}
- &= - i \frac{V_{ab}}{2 \hbar} \Big( \exp\!\big(i (\omega \!-\! \omega_0) t\big) + \exp\!\big(\!-\! i (\omega \!+\! \omega_0) t\big) \Big) \: c_b
+ &= - i \frac{V_{ab}}{2 \hbar} \Big( e^{i (\omega - \omega_0) t} + e^{-i (\omega + \omega_0) t} \Big) \: c_b
\\
\dv{c_b}{t}
- &= - i \frac{V_{ab}}{2 \hbar} \Big( \exp\!\big(i (\omega \!+\! \omega_0) t\big) + \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t\big) \Big) \: c_a
+ &= - i \frac{V_{ab}}{2 \hbar} \Big( e^{i (\omega + \omega_0) t} + e^{-i (\omega - \omega_0) t} \Big) \: c_a
\end{aligned}$$
Here, we make the
[rotating wave approximation](/know/concept/rotating-wave-approximation/):
assuming we are close to resonance $$\omega \approx \omega_0$$,
-we argue that $$\exp(i (\omega \!+\! \omega_0) t)$$
+we argue that $$e^{i (\omega + \omega_0) t}$$
oscillates so fast that its effect is negligible
when the system is observed over a reasonable time interval.
Dropping those terms leaves us with:
@@ -82,10 +82,10 @@ $$\begin{aligned}
\boxed{
\begin{aligned}
\dv{c_a}{t}
- &= - i \frac{V_{ab}}{2 \hbar} \exp\!\big(i (\omega \!-\! \omega_0) t \big) \: c_b
+ &= - i \frac{V_{ab}}{2 \hbar} \: e^{i (\omega - \omega_0) t} \: c_b
\\
\dv{c_b}{t}
- &= - i \frac{V_{ba}}{2 \hbar} \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t \big) \: c_a
+ &= - i \frac{V_{ba}}{2 \hbar} \: e^{-i (\omega - \omega_0) t} \: c_a
\end{aligned}
}
\end{aligned}$$
@@ -96,13 +96,12 @@ and then substitute $$\idv{c_b}{t}$$ for the second equation:
$$\begin{aligned}
\dvn{2}{c_a}{t}
- &= - i \frac{V_{ab}}{2 \hbar} \bigg( i (\omega - \omega_0) \: c_b + \dv{c_b}{t} \bigg) \exp\!\big(i (\omega \!-\! \omega_0) t \big)
+ &= - i \frac{V_{ab}}{2 \hbar} \bigg( i (\omega - \omega_0) \: c_b + \dv{c_b}{t} \bigg) e^{i (\omega - \omega_0) t}
\\
- &= - i \frac{V_{ab}}{2 \hbar} \bigg( i (\omega - \omega_0) \: c_b
- - i \frac{V_{ba}}{2 \hbar} \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t \big) \: c_a \bigg)
- \exp\!\big(i (\omega \!-\! \omega_0) t \big)
+ &= - i \frac{V_{ab}}{2 \hbar} \bigg( i (\omega - \omega_0) \: c_b
+ - i \frac{V_{ba}}{2 \hbar} \: e^{-i (\omega - \omega_0) t} \: c_a \bigg) e^{i (\omega - \omega_0) t}
\\
- &= \frac{V_{ab}}{2 \hbar} (\omega - \omega_0) \exp\!\big(i (\omega \!-\! \omega_0) t \big) \: c_b - \frac{|V_{ab}|^2}{(2 \hbar)^2} c_a
+ &= \frac{V_{ab}}{2 \hbar} (\omega - \omega_0) \: e^{i (\omega - \omega_0) t} \: c_b - \frac{|V_{ab}|^2}{(2 \hbar)^2} \: c_a
\end{aligned}$$
In the first term, we recognize $$\idv{c_a}{t}$$,
@@ -113,7 +112,7 @@ $$\begin{aligned}
= \dvn{2}{c_a}{t} - i (\omega - \omega_0) \dv{c_a}{t} + \frac{|V_{ab}|^2}{(2 \hbar)^2} \: c_a
\end{aligned}$$
-To solve this, we make the ansatz $$c_a(t) = \exp(\lambda t)$$,
+To solve this, we make the ansatz $$c_a(t) = e^{\lambda t}$$,
which, upon insertion, gives us:
$$\begin{aligned}
@@ -148,7 +147,7 @@ to be determined from initial conditions (and normalization):
$$\begin{aligned}
\boxed{
c_a(t)
- = \Big( A \sin(\tilde{\Omega} t / 2) + B \cos(\tilde{\Omega} t / 2) \Big) \exp\!\big(i (\omega \!-\! \omega_0) t / 2 \big)
+ = \Big( A \sin(\tilde{\Omega} t / 2) + B \cos(\tilde{\Omega} t / 2) \Big) e^{i (\omega - \omega_0) t / 2}
}
\end{aligned}$$
@@ -173,7 +172,7 @@ Note that the period was halved by squaring.
This periodic "flopping" of the particle between $$\Ket{a}$$ and $$\Ket{b}$$
is known as **Rabi oscillation**, **Rabi flopping** or the **Rabi cycle**.
This is a more accurate treatment
-of the flopping found from first-order perturbation theory.
+of the flopping found from first-order perturbation theory in textbooks.
The name **generalized Rabi frequency** suggests
that there is a non-general version.
@@ -185,6 +184,8 @@ $$\begin{aligned}
\equiv \frac{V_{ba}}{\hbar}
\end{aligned}$$
+Some authors use $$|V_{ba}|$$ instead,
+but not doing that lets us use $$\Omega$$ as a nice abbreviation.
As an example, Rabi oscillation arises
in the [electric dipole approximation](/know/concept/electric-dipole-approximation/),
where $$\hat{H}_1$$ is: