summaryrefslogtreecommitdiff
path: root/source/know/concept/spherical-coordinates/index.md
diff options
context:
space:
mode:
Diffstat (limited to 'source/know/concept/spherical-coordinates/index.md')
-rw-r--r--source/know/concept/spherical-coordinates/index.md31
1 files changed, 14 insertions, 17 deletions
diff --git a/source/know/concept/spherical-coordinates/index.md b/source/know/concept/spherical-coordinates/index.md
index 7f6d111..1607b61 100644
--- a/source/know/concept/spherical-coordinates/index.md
+++ b/source/know/concept/spherical-coordinates/index.md
@@ -22,8 +22,8 @@ Note that this is the standard notation among physicists,
but mathematicians often switch the definitions of $$\theta$$ and $$\varphi$$,
while still writing $$(r, \theta, \varphi)$$.
-Cartesian coordinates $$(x, y, z)$$ and the spherical system
-$$(r, \theta, \varphi)$$ are related by:
+[Cartesian coordinates](/know/concept/cartesian-coordinates/) $$(x, y, z)$$
+and the spherical system $$(r, \theta, \varphi)$$ are related by:
$$\begin{aligned}
\boxed{
@@ -114,8 +114,6 @@ using the standard formulae for orthogonal curvilinear coordinates.
-
-
## Differential elements
For line integrals,
@@ -169,7 +167,7 @@ $$\begin{aligned}
$$\begin{aligned}
\boxed{
\nabla \cdot \vb{V}
- = \pdv{V_r}{r} + \frac{2}{r} V_r
+ = \pdv{V_r}{r} + \frac{2 V_r}{r}
+ \frac{1}{r} \pdv{V_\theta}{\theta} + \frac{V_\theta}{r \tan{\theta}}
+ \frac{1}{r \sin\theta} \pdv{V_\varphi}{\varphi}
}
@@ -216,15 +214,15 @@ $$\begin{aligned}
\begin{aligned}
\nabla (\nabla \cdot \vb{V})
&= \quad \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r} \mpdv{V_\theta}{r}{\theta} + \frac{1}{r \sin{\theta}} \mpdv{V_\varphi}{\varphi}{r}
- + \frac{2}{r} \pdv{V_r}{r} - \frac{1}{r^2} \pdv{V_\theta}{\theta}
\\
- &\qquad\qquad - \frac{1}{r^2 \sin{\theta}} \pdv{V_\varphi}{\varphi}
+ &\qquad\qquad + \frac{2}{r} \pdv{V_r}{r} - \frac{1}{r^2} \pdv{V_\theta}{\theta}
+ - \frac{1}{r^2 \sin{\theta}} \pdv{V_\varphi}{\varphi}
+ \frac{1}{r \tan{\theta}} \pdv{V_\theta}{r} - \frac{2 V_r}{r^2} - \frac{V_\theta}{r^2 \tan{\theta}} \bigg)
\\
&\quad\: + \vu{e}_\theta \bigg( \frac{1}{r} \mpdv{V_r}{\theta}{r} + \frac{1}{r^2} \pdvn{2}{V_\theta}{\theta}
- + \frac{1}{r^2 \sin{\theta}} \mpdv{V_\varphi}{\theta}{\varphi} + \frac{2}{r^2} \pdv{V_r}{\theta}
+ + \frac{1}{r^2 \sin{\theta}} \mpdv{V_\varphi}{\theta}{\varphi}
\\
- &\qquad\qquad + \frac{1}{r^2 \tan{\theta}} \pdv{V_\theta}{\theta}
+ &\qquad\qquad + \frac{2}{r^2} \pdv{V_r}{\theta} + \frac{1}{r^2 \tan{\theta}} \pdv{V_\theta}{\theta}
- \frac{\cos{\theta}}{r^2 \sin^2{\theta}} \pdv{V_\varphi}{\varphi} - \frac{V_\theta}{r^2 \sin^2{\theta}} \bigg)
\\
&\quad\: + \vu{e}_\varphi \bigg( \frac{1}{r \sin{\theta}} \mpdv{V_r}{\varphi}{r} + \frac{1}{r^2 \sin{\theta}} \mpdv{V_\theta}{\varphi}{\theta}
@@ -275,23 +273,22 @@ $$\begin{aligned}
\begin{aligned}
\nabla^2 \vb{V}
&= \quad\: \vu{e}_r \bigg( \pdvn{2}{V_r}{r} + \frac{1}{r^2} \pdvn{2}{V_r}{\theta} + \frac{1}{r^2 \sin^2{\theta}} \pdvn{2}{V_r}{\varphi}
- + \frac{2}{r} \pdv{V_r}{r} + \frac{1}{r^2 \tan{\theta}} \pdv{V_r}{\theta}
\\
- &\qquad\qquad - \frac{2}{r^2} \pdv{V_\theta}{\theta} - \frac{2}{r^2 \sin{\theta}} \pdv{V_\varphi}{\varphi}
+ &\qquad\qquad + \frac{2}{r} \pdv{V_r}{r} + \frac{1}{r^2 \tan{\theta}} \pdv{V_r}{\theta}
+ - \frac{2}{r^2} \pdv{V_\theta}{\theta} - \frac{2}{r^2 \sin{\theta}} \pdv{V_\varphi}{\varphi}
- \frac{2 V_r}{r^2} - \frac{2 V_\theta}{r^2 \tan{\theta}} \bigg)
\\
&\quad\: + \vu{e}_\theta \bigg( \pdvn{2}{V_\theta}{r} + \frac{1}{r^2} \pdvn{2}{V_\theta}{\theta}
- + \frac{1}{r^2 \sin^2{\theta}} \pdvn{2}{V_\theta}{\varphi} + \frac{2}{r^2} \pdv{V_r}{\theta} + \frac{2}{r} \pdv{V_\theta}{r}
+ + \frac{1}{r^2 \sin^2{\theta}} \pdvn{2}{V_\theta}{\varphi}
\\
- &\qquad\qquad + \frac{1}{r^2 \tan{\theta}} \pdv{V_\theta}{\theta}
+ &\qquad\qquad + \frac{2}{r^2} \pdv{V_r}{\theta} + \frac{2}{r} \pdv{V_\theta}{r} + \frac{1}{r^2 \tan{\theta}} \pdv{V_\theta}{\theta}
- \frac{2 \cos{\theta}}{r^2 \sin^2{\theta}} \pdv{V_\varphi}{\varphi} - \frac{V_\theta}{r^2 \sin^2{\theta}} \bigg)
\\
&\quad\: + \vu{e}_\varphi \bigg( \pdvn{2}{V_\varphi}{r} + \frac{1}{r^2} \pdvn{2}{V_\varphi}{\theta}
- + \frac{1}{r^2 \sin^2{\theta}} \pdvn{2}{V_\varphi}{\varphi} + \frac{2}{r^2 \sin{\theta}} \pdv{V_r}{\varphi}
+ + \frac{1}{r^2 \sin^2{\theta}} \pdvn{2}{V_\varphi}{\varphi}
\\
- &\qquad\qquad + \frac{2 \cos{\theta}}{r^2 \sin^2{\theta}} \pdv{V_\theta}{\varphi}
- + \frac{2}{r} \pdv{V_\varphi}{r} + \frac{1}{r^2 \tan{\theta}} \pdv{V_\varphi}{\theta}
- - \frac{V_\varphi}{r^2 \sin^2{\theta}} \bigg)
+ &\qquad\qquad + \frac{2}{r^2 \sin{\theta}} \pdv{V_r}{\varphi} + \frac{2 \cos{\theta}}{r^2 \sin^2{\theta}} \pdv{V_\theta}{\varphi}
+ + \frac{2}{r} \pdv{V_\varphi}{r} + \frac{1}{r^2 \tan{\theta}} \pdv{V_\varphi}{\theta} - \frac{V_\varphi}{r^2 \sin^2{\theta}} \bigg)
\end{aligned}
}
\end{aligned}$$