summaryrefslogtreecommitdiff
path: root/source/know/concept/stokes-law/index.md
diff options
context:
space:
mode:
Diffstat (limited to 'source/know/concept/stokes-law/index.md')
-rw-r--r--source/know/concept/stokes-law/index.md33
1 files changed, 17 insertions, 16 deletions
diff --git a/source/know/concept/stokes-law/index.md b/source/know/concept/stokes-law/index.md
index 3a02a83..40212ef 100644
--- a/source/know/concept/stokes-law/index.md
+++ b/source/know/concept/stokes-law/index.md
@@ -50,10 +50,10 @@ $$\begin{gathered}
\\
v_r
= U f(r) \cos\theta
- \qquad
+ \qquad \quad
v_\theta
= - U g(r) \sin\theta
- \qquad
+ \qquad \quad
v_\phi
= 0
\end{gathered}$$
@@ -76,7 +76,7 @@ $$\begin{aligned}
\\
&= U \dv{f}{r} \cos\theta - \frac{U g}{r} \cos\theta + \frac{2 U f}{r} \cos\theta - \frac{U g}{r} \cos\theta
\\
- &= U \cos\theta \Big( \dv{f}{r} + \frac{2}{r} f - \frac{2}{r} g \Big)
+ &= U \Big( \dv{f}{r} + \frac{2}{r} f - \frac{2}{r} g \Big) \cos\theta
\end{aligned}$$
The parenthesized expression must be zero for all $$r$$,
@@ -103,16 +103,16 @@ which is as follows for our ansatz $$p(r, \theta)$$:
$$\begin{aligned}
0
= \nabla^2 p
- &= \frac{1}{r^2} \pdv{}{r}\Big( r^2 \pdv{p}{r} \Big) + \frac{1}{r^2 \sin\theta} \pdv{}{\theta}\Big( \sin\theta \pdv{p}{\theta} \Big)
+ &= \frac{1}{r^2} \pdv{}{r}\Big( r^2 \pdv{p}{r} \Big) + \frac{1}{r^2 \sin\theta} \pdv{}{\theta}\Big( \pdv{p}{\theta} \sin\theta \Big)
\\
0
&= \frac{\eta U \cos\theta}{r^2} \dv{}{r}\Big( r^2 \dv{q}{r} \Big)
- \frac{\eta U q}{r^2 \sin\theta} \pdv{}{\theta}\Big( \sin^2\theta \Big)
\\
- &= \frac{\eta U \cos\theta}{r^2} \dv{}{r}\Big( r^2 \dv{q}{r} \Big)
+ &= \frac{\eta U}{r^2} \dv{}{r}\Big( r^2 \dv{q}{r} \Big) \cos\theta
- \frac{2 \eta U q}{r^2 \sin\theta} \sin\theta \cos\theta
\\
- &= \eta U \cos\theta \Big( \dvn{2}{q}{r} + \frac{2}{r} \dv{q}{r} - \frac{2}{r^2} q \Big)
+ &= \eta U \Big( \dvn{2}{q}{r} + \frac{2}{r} \dv{q}{r} - \frac{2}{r^2} q \Big) \cos\theta
\end{aligned}$$
Again, the parenthesized expression must be zero for all $$r$$,
@@ -129,7 +129,7 @@ The pressure is therefore:
$$\begin{aligned}
p
- = \eta U \cos\theta \Big( \frac{C_3}{r^2} + C_4 r \Big)
+ = \eta U \Big( \frac{C_3}{r^2} + C_4 r \Big) \cos\theta
\end{aligned}$$
Consequently, its gradient $$\nabla p$$ in spherical coordinates is as follows:
@@ -137,7 +137,7 @@ Consequently, its gradient $$\nabla p$$ in spherical coordinates is as follows:
$$\begin{aligned}
\nabla p
= \vu{e}_r \pdv{p}{r} + \vu{e}_\theta \frac{1}{r} \pdv{p}{\theta}
- = \vu{e}_r \Big( \eta U \cos\theta \dv{q}{r} \Big) - \vu{e}_\theta \Big( \eta U \sin\theta \frac{q}{r} \Big)
+ = \vu{e}_r \Big( \eta U \dv{q}{r} \cos\theta \Big) - \vu{e}_\theta \Big( \eta U \frac{q}{r} \sin\theta \Big)
\end{aligned}$$
According to the Stokes equation, this equals $$\eta \nabla^2 \va{v}$$.
@@ -148,24 +148,24 @@ $$\begin{aligned}
&= \pdvn{2}{v_r}{r} + \frac{1}{r^2} \pdvn{2}{v_r}{\theta} + \frac{2}{r} \pdv{v_r}{r}
+ \frac{\cot\theta}{r^2} \pdv{v_r}{\theta} - \frac{2}{r^2} \pdv{v_\theta}{\theta} - \frac{2}{r^2} v_r - \frac{2 \cot\theta}{r^2} v_\theta
\\
- &= U \cos\theta \Big( \dvn{2}{f}{r} - \frac{1}{r^2} f + \frac{2}{r} \dv{f}{r} - \frac{1}{r^2} f
- + \frac{2}{r^2} g - \frac{2}{r^2} f + \frac{2}{r^2} g \Big)
+ &= U \Big( \dvn{2}{f}{r} - \frac{1}{r^2} f + \frac{2}{r} \dv{f}{r} - \frac{1}{r^2} f
+ + \frac{2}{r^2} g - \frac{2}{r^2} f + \frac{2}{r^2} g \Big) \cos\theta
\\
- &= U \cos\theta \Big( \dvn{2}{f}{r} + \frac{2}{r} \dv{f}{r} - \frac{4}{r^2} f + \frac{4}{r^2} g \Big)
+ &= U \Big( \dvn{2}{f}{r} + \frac{2}{r} \dv{f}{r} - \frac{4}{r^2} f + \frac{4}{r^2} g \Big) \cos\theta
\end{aligned}$$
Substituting $$g$$ for the expression we found from incompressibility lets us simplify this:
$$\begin{aligned}
\eta (\nabla^2 \va{v})_r
- &= \eta U \cos\theta \Big( \dvn{2}{f}{r} + \frac{4}{r} \dv{f}{r} \Big)
+ &= \eta U \Big( \dvn{2}{f}{r} + \frac{4}{r} \dv{f}{r} \Big) \cos\theta
\end{aligned}$$
The Stokes equation says that this must be equal to the $$r$$-component of $$\nabla p$$:
$$\begin{aligned}
- \eta U \cos\theta \Big( \dvn{2}{f}{r} + \frac{4}{r} \dv{f}{r} \Big)
- = \eta U \cos\theta \Big( \!-\! \frac{2 C_3}{r^3} + C_4 \Big)
+ \eta U \Big( \dvn{2}{f}{r} + \frac{4}{r} \dv{f}{r} \Big) \cos\theta
+ = \eta U \Big( \!-\! \frac{2 C_3}{r^3} + C_4 \Big) \cos\theta
\end{aligned}$$
Where we have inserted $$\idv{q}{r}$$.
@@ -213,14 +213,15 @@ $$\begin{gathered}
\\
\boxed{
v_r
- = U \cos\theta \Big( 1 + \frac{a^3}{2 r^3} - \frac{3 a}{2 r} \Big)
+ = U \Big( 1 + \frac{a^3}{2 r^3} - \frac{3 a}{2 r} \Big) \cos\theta
\qquad
v_\theta
- = - U \sin\theta \Big( 1 - \frac{a^3}{4 r^3} - \frac{3 a}{4 r} \Big)
+ = - U \Big( 1 - \frac{a^3}{4 r^3} - \frac{3 a}{4 r} \Big) \sin\theta
}
\end{gathered}$$
+
## Drag force
From the definition of [viscosity](/know/concept/viscosity/),