summaryrefslogtreecommitdiff
path: root/source/know/concept/two-fluid-equations/index.md
diff options
context:
space:
mode:
Diffstat (limited to 'source/know/concept/two-fluid-equations/index.md')
-rw-r--r--source/know/concept/two-fluid-equations/index.md47
1 files changed, 28 insertions, 19 deletions
diff --git a/source/know/concept/two-fluid-equations/index.md b/source/know/concept/two-fluid-equations/index.md
index e224e3e..a00a2f9 100644
--- a/source/know/concept/two-fluid-equations/index.md
+++ b/source/know/concept/two-fluid-equations/index.md
@@ -98,15 +98,17 @@ leading to the following **continuity equations**:
$$\begin{aligned}
\boxed{
- \pdv{n_i}{t} + \nabla \cdot (n_i \vb{u}_i)
- = 0
- \qquad \quad
- \pdv{n_e}{t} + \nabla \cdot (n_e \vb{u}_e)
- = 0
+ \begin{aligned}
+ 0
+ &= \pdv{n_i}{t} + \nabla \cdot (n_i \vb{u}_i)
+ \\
+ 0
+ &= \pdv{n_e}{t} + \nabla \cdot (n_e \vb{u}_e)
+ \end{aligned}
}
\end{aligned}$$
-These are 8 equations (2 scalar continuity, 2 vector momentum),
+These are 8 equations (2 scalars for continuity, 2 vectors for momentum),
but 16 unknowns $$\vb{u}_i$$, $$\vb{u}_e$$, $$\vb{E}$$, $$\vb{B}$$, $$n_i$$, $$n_e$$, $$p_i$$ and $$p_e$$.
We would like to close this system, so we need 8 more.
An obvious choice is [Maxwell's equations](/know/concept/maxwells-equations/),
@@ -115,9 +117,13 @@ in particular Faraday's and Ampère's law
$$\begin{aligned}
\boxed{
- \nabla \cross \vb{E} = - \pdv{\vb{B}}{t}
- \qquad \quad
- \nabla \cross \vb{B} = \mu_0 \Big( n_i q_i \vb{u}_i + n_e q_e \vb{u}_e + \varepsilon_0 \pdv{\vb{E}}{t} \Big)
+ \begin{aligned}
+ \nabla \cross \vb{E}
+ &= - \pdv{\vb{B}}{t}
+ \\
+ \nabla \cross \vb{B}
+ &= \mu_0 \Big( n_i q_i \vb{u}_i + n_e q_e \vb{u}_e + \varepsilon_0 \pdv{\vb{E}}{t} \Big)
+ \end{aligned}
}
\end{aligned}$$
@@ -129,7 +135,7 @@ it turns out that:
$$\begin{aligned}
\frac{\mathrm{D}}{\mathrm{D} t} \big( p V^\gamma \big) = 0
- \qquad \quad
+ \qquad \qquad
\gamma
\equiv \frac{C_P}{C_V}
= \frac{N + 2}{N}
@@ -146,7 +152,7 @@ for some constant $$C$$:
$$\begin{aligned}
\frac{\mathrm{D}}{\mathrm{D} t} \Big( \frac{p}{n^\gamma} \Big) = 0
- \quad \implies \quad
+ \qquad \implies \qquad
p = C n^\gamma
\end{aligned}$$
@@ -155,11 +161,13 @@ giving us a set of 16 equations for 16 unknowns:
$$\begin{aligned}
\boxed{
- \frac{\mathrm{D}}{\mathrm{D} t} \Big( \frac{p_i}{n_i^\gamma} \Big)
- = 0
- \qquad \quad
- \frac{\mathrm{D}}{\mathrm{D} t} \Big( \frac{p_e}{n_e^\gamma} \Big)
- = 0
+ \begin{aligned}
+ 0
+ &= \frac{\mathrm{D}}{\mathrm{D} t} \Big( \frac{p_i}{n_i^\gamma} \Big)
+ \\
+ 0
+ &= \frac{\mathrm{D}}{\mathrm{D} t} \Big( \frac{p_e}{n_e^\gamma} \Big)
+ \end{aligned}
}
\end{aligned}$$
@@ -169,15 +177,16 @@ using simple differentiation and the ideal gas law:
$$\begin{aligned}
p = C n^\gamma
- \quad \implies \quad
+ \qquad \implies \qquad
\nabla p
= \gamma \frac{C n^{\gamma}}{n} \nabla n
= \gamma p \frac{\nabla n}{n}
= \gamma k_B T \nabla n
\end{aligned}$$
-Note that the ideal gas law was not used immediately,
-to allow for $$\gamma \neq 1$$.
+Note that we waited until now to use the ideal gas law,
+in order to include the case $$\gamma \neq 1$$.
+
## Fluid drifts