summaryrefslogtreecommitdiff
path: root/source/know/concept/bells-theorem/index.md
blob: 1752854d0bc90241c4c2f71cfceb466f525c86a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
---
title: "Bell's theorem"
date: 2021-03-28
categories:
- Physics
- Quantum mechanics
- Quantum information
layout: "concept"
---

**Bell's theorem** states that the laws of quantum mechanics
cannot be explained by theories built on
so-called **local hidden variables** (LHVs).

Suppose that we have two spin-1/2 particles, called $A$ and $B$,
in an entangled [Bell state](/know/concept/bell-state/):

$$\begin{aligned}
    \Ket{\Psi^{-}}
    = \frac{1}{\sqrt{2}} \Big( \Ket{\uparrow \downarrow} - \Ket{\downarrow \uparrow} \Big)
\end{aligned}$$

Since they are entangled,
if we measure the $z$-spin of particle $A$, and find e.g. $\Ket{\uparrow}$,
then particle $B$ immediately takes the opposite state $\Ket{\downarrow}$.
The point is that this collapse is instant,
regardless of the distance between $A$ and $B$.

Einstein called this effect "action-at-a-distance",
and used it as evidence that quantum mechanics is an incomplete theory.
He said that there must be some **hidden variable** $\lambda$
that determines the outcome of measurements of $A$ and $B$
from the moment the entangled pair is created.
However, according to Bell's theorem, he was wrong.

To prove this, let us assume that Einstein was right, and some $\lambda$,
which we cannot understand, let alone calculate or measure, controls the results.
We want to know the spins of the entangled pair
along arbitrary directions $\vec{a}$ and $\vec{b}$,
so the outcomes for particles $A$ and $B$ are:

$$\begin{aligned}
    A(\vec{a}, \lambda) = \pm 1
    \qquad \quad
    B(\vec{b}, \lambda) = \pm 1
\end{aligned}$$

Where $\pm 1$ are the eigenvalues of the Pauli matrices
in the chosen directions $\vec{a}$ and $\vec{b}$:

$$\begin{aligned}
    \hat{\sigma}_a
    &= \vec{a} \cdot \vec{\sigma}
    = a_x \hat{\sigma}_x + a_y \hat{\sigma}_y + a_z \hat{\sigma}_z
    \\
    \hat{\sigma}_b
    &= \vec{b} \cdot \vec{\sigma}
    = b_x \hat{\sigma}_x + b_y \hat{\sigma}_y + b_z \hat{\sigma}_z
\end{aligned}$$

Whether $\lambda$ is a scalar or a vector does not matter;
we simply demand that it follows an unknown probability distribution $\rho(\lambda)$:

$$\begin{aligned}
    \int \rho(\lambda) \dd{\lambda} = 1
    \qquad \quad
    \rho(\lambda) \ge 0
\end{aligned}$$

The product of the outcomes of $A$ and $B$ then has the following expectation value.
Note that we only multiply $A$ and $B$ for shared $\lambda$-values:
this is what makes it a **local** hidden variable:

$$\begin{aligned}
    \Expval{A_a B_b}
    = \int \rho(\lambda) \: A(\vec{a}, \lambda) \: B(\vec{b}, \lambda) \dd{\lambda}
\end{aligned}$$

From this, two inequalities can be derived,
which both prove Bell's theorem.


## Bell inequality

If $\vec{a} = \vec{b}$, then we know that $A$ and $B$ always have opposite spins:

$$\begin{aligned}
    A(\vec{a}, \lambda)
    = A(\vec{b}, \lambda)
    = - B(\vec{b}, \lambda)
\end{aligned}$$

The expectation value of the product can therefore be rewritten as follows:

$$\begin{aligned}
    \Expval{A_a B_b}
    = - \int \rho(\lambda) \: A(\vec{a}, \lambda) \: A(\vec{b}, \lambda) \dd{\lambda}
\end{aligned}$$

Next, we introduce an arbitrary third direction $\vec{c}$,
and use the fact that $( A(\vec{b}, \lambda) )^2 = 1$:

$$\begin{aligned}
    \Expval{A_a B_b} - \Expval{A_a B_c}
    &= - \int \rho(\lambda) \Big( A(\vec{a}, \lambda) \: A(\vec{b}, \lambda) - A(\vec{a}, \lambda) \: A(\vec{c}, \lambda) \Big) \dd{\lambda}
    \\
    &= - \int \rho(\lambda) \Big( 1 - A(\vec{b}, \lambda) \: A(\vec{c}, \lambda) \Big) A(\vec{a}, \lambda) \: A(\vec{b}, \lambda) \dd{\lambda}
\end{aligned}$$

Inside the integral, the only factors that can be negative
are the last two, and their product is $\pm 1$.
Taking the absolute value of the whole left,
and of the integrand on the right, we thus get:

$$\begin{aligned}
    \Big| \Expval{A_a B_b} - \Expval{A_a B_c} \Big|
    &\le \int \rho(\lambda) \Big( 1 - A(\vec{b}, \lambda) \: A(\vec{c}, \lambda) \Big)
    \: \Big| A(\vec{a}, \lambda) \: A(\vec{b}, \lambda) \Big| \dd{\lambda}
    \\
    &\le \int \rho(\lambda) \dd{\lambda} - \int \rho(\lambda) A(\vec{b}, \lambda) \: A(\vec{c}, \lambda) \dd{\lambda}
\end{aligned}$$

Since $\rho(\lambda)$ is a normalized probability density function,
we arrive at the **Bell inequality**:

$$\begin{aligned}
    \boxed{
        \Big| \Expval{A_a B_b} - \Expval{A_a B_c} \Big|
        \le 1 + \Expval{A_b B_c}
    }
\end{aligned}$$

Any theory involving an LHV $\lambda$ must obey this inequality.
The problem, however, is that quantum mechanics dictates the expectation values
for the state $\Ket{\Psi^{-}}$:

$$\begin{aligned}
    \Expval{A_a B_b} = - \vec{a} \cdot \vec{b}
\end{aligned}$$

Finding directions which violate the Bell inequality is easy:
for example, if $\vec{a}$ and $\vec{b}$ are orthogonal,
and $\vec{c}$ is at a $\pi/4$ angle to both of them,
then the left becomes $0.707$ and the right $0.293$,
which clearly disagrees with the inequality,
meaning that LHVs are impossible.


## CHSH inequality

The **Clauser-Horne-Shimony-Holt** or simply **CHSH inequality**
takes a slightly different approach, and is more useful in practice.

Consider four spin directions, two for $A$ called $\vec{a}_1$ and $\vec{a}_2$,
and two for $B$ called $\vec{b}_1$ and $\vec{b}_2$.
Let us introduce the following abbreviations:

$$\begin{aligned}
    A_1 &= A(\vec{a}_1, \lambda)
    \qquad \quad
    A_2 = A(\vec{a}_2, \lambda)
    \\
    B_1 &= B(\vec{b}_1, \lambda)
    \qquad \quad
    B_2 = B(\vec{b}_2, \lambda)
\end{aligned}$$

From the definition of the expectation value,
we know that the difference is given by:

$$\begin{aligned}
    \Expval{A_1 B_1} - \Expval{A_1 B_2}
    = \int \rho(\lambda) \Big( A_1 B_1 - A_1 B_2 \Big) \dd{\lambda}
\end{aligned}$$

We introduce some new terms and rearrange the resulting expression:

$$\begin{aligned}
    \Expval{A_1 B_1} - \Expval{A_1 B_2}
    &= \int \rho(\lambda) \Big( A_1 B_1 - A_1 B_2 \pm A_1 B_1 A_2 B_2 \mp A_1 B_1 A_2 B_2 \Big) \dd{\lambda}
    \\
    &= \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
    - \!\int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda}
\end{aligned}$$

Taking the absolute value of both sides
and invoking the triangle inequality then yields:

$$\begin{aligned}
    \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
    &= \bigg|\! \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
    - \!\int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda} \!\bigg|
    \\
    &\le \bigg|\! \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda} \!\bigg|
    + \bigg|\! \int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda} \!\bigg|
\end{aligned}$$

Using the fact that the product of $A$ and $B$ is always either $-1$ or $+1$,
we can reduce this to:

$$\begin{aligned}
    \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
    &\le \int \rho(\lambda) \Big| A_1 B_1 \Big| \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
    + \!\int \rho(\lambda) \Big| A_1 B_2 \Big| \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda}
    \\
    &\le \int \rho(\lambda) \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
    + \!\int \rho(\lambda) \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda}
\end{aligned}$$

Evaluating these integrals gives us the following inequality,
which holds for both choices of $\pm$:

$$\begin{aligned}
    \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
    &\le 2 \pm \Expval{A_2 B_2} \pm \Expval{A_2 B_1}
\end{aligned}$$

We should choose the signs such that the right-hand side is as small as possible, that is:

$$\begin{aligned}
    \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
    &\le 2 \pm \Big( \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big)
    \\
    &\le 2 - \Big| \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big|
\end{aligned}$$

Rearranging this and once again using the triangle inequality,
we get the CHSH inequality:

$$\begin{aligned}
    2
    &\ge \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big| + \Big| \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big|
    \\
    &\ge \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} + \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big|
\end{aligned}$$

The quantity on the right-hand side is sometimes called the **CHSH quantity** $S$,
and measures the correlation between the spins of $A$ and $B$:

$$\begin{aligned}
    \boxed{
        S \equiv \Expval{A_2 B_1} + \Expval{A_2 B_2} + \Expval{A_1 B_1} - \Expval{A_1 B_2}
    }
\end{aligned}$$

The CHSH inequality places an upper bound on the magnitude of $S$
for LHV-based theories:

$$\begin{aligned}
    \boxed{
        |S| \le 2
    }
\end{aligned}$$


## Tsirelson's bound

Quantum physics can violate the CHSH inequality, but by how much?
Consider the following two-particle operator,
whose expectation value is the CHSH quantity, i.e. $S = \expval{\hat{S}}$:

$$\begin{aligned}
    \hat{S}
    = \hat{A}_2 \otimes \hat{B}_1 + \hat{A}_2 \otimes \hat{B}_2 + \hat{A}_1 \otimes \hat{B}_1 - \hat{A}_1 \otimes \hat{B}_2
\end{aligned}$$

Where $\otimes$ is the tensor product,
and e.g. $\hat{A}_1$ is the Pauli matrix for the $\vec{a}_1$-direction.
The square of this operator is then given by:

$$\begin{aligned}
    \hat{S}^2
    = \quad &\hat{A}_2^2 \otimes \hat{B}_1^2 + \hat{A}_2^2 \otimes \hat{B}_1 \hat{B}_2
    + \hat{A}_2 \hat{A}_1 \otimes \hat{B}_1^2 - \hat{A}_2 \hat{A}_1 \otimes \hat{B}_1 \hat{B}_2
    \\
    + &\hat{A}_2^2 \otimes \hat{B}_2 \hat{B}_1 + \hat{A}_2^2 \otimes \hat{B}_2^2
    + \hat{A}_2 \hat{A}_1 \otimes \hat{B}_2 \hat{B}_1 - \hat{A}_2 \hat{A}_1 \otimes \hat{B}_2^2
    \\
    + &\hat{A}_1 \hat{A}_2 \otimes \hat{B}_1^2 + \hat{A}_1 \hat{A}_2 \otimes \hat{B}_1 \hat{B}_2
    + \hat{A}_1^2 \otimes \hat{B}_1^2 - \hat{A}_1^2 \otimes \hat{B}_1 \hat{B}_2
    \\
    - &\hat{A}_1 \hat{A}_2 \otimes \hat{B}_2 \hat{B}_1 - \hat{A}_1 \hat{A}_2 \otimes \hat{B}_2^2
    - \hat{A}_1^2 \otimes \hat{B}_2 \hat{B}_1 + \hat{A}_1^2 \otimes \hat{B}_2^2
    \\
    = \quad &\hat{A}_2^2 \otimes \hat{B}_1^2 + \hat{A}_2^2 \otimes \hat{B}_2^2 + \hat{A}_1^2 \otimes \hat{B}_1^2 + \hat{A}_1^2 \otimes \hat{B}_2^2
    \\
    + &\hat{A}_2^2 \otimes \acomm{\hat{B}_1}{\hat{B}_2} - \hat{A}_1^2 \otimes \acomm{\hat{B}_1}{\hat{B}_2}
    + \acomm{\hat{A}_1}{\hat{A}_2} \otimes \hat{B}_1^2 - \acomm{\hat{A}_1}{\hat{A}_2} \otimes \hat{B}_2^2
    \\
    + &\hat{A}_1 \hat{A}_2 \otimes \comm{\hat{B}_1}{\hat{B}_2} - \hat{A}_2 \hat{A}_1 \otimes \comm{\hat{B}_1}{\hat{B}_2}
\end{aligned}$$

Spin operators are unitary, so their square is the identity,
e.g. $\hat{A}_1^2 = \hat{I}$. Therefore $\hat{S}^2$ reduces to:

$$\begin{aligned}
    \hat{S}^2
    &= 4 \: (\hat{I} \otimes \hat{I}) + \comm{\hat{A}_1}{\hat{A}_2} \otimes \comm{\hat{B}_1}{\hat{B}_2}
\end{aligned}$$

The *norm* $\norm{\hat{S}^2}$ of this operator
is the largest possible expectation value $\expval{\hat{S}^2}$,
which is the same as its largest eigenvalue.
It is given by:

$$\begin{aligned}
    \Norm{\hat{S}^2}
    &= 4 + \Norm{\comm{\hat{A}_1}{\hat{A}_2} \otimes \comm{\hat{B}_1}{\hat{B}_2}}
    \\
    &\le 4 + \Norm{\comm{\hat{A}_1}{\hat{A}_2}} \Norm{\comm{\hat{B}_1}{\hat{B}_2}}
\end{aligned}$$

We find a bound for the norm of the commutators by using the triangle inequality, such that:

$$\begin{aligned}
    \Norm{\comm{\hat{A}_1}{\hat{A}_2}}
    = \Norm{\hat{A}_1 \hat{A}_2 - \hat{A}_2 \hat{A}_1}
    \le \Norm{\hat{A}_1 \hat{A}_2} + \Norm{\hat{A}_2 \hat{A}_1}
    \le 2 \Norm{\hat{A}_1 \hat{A}_2}
    \le 2
\end{aligned}$$

And $\norm{\comm{\hat{B}_1}{\hat{B}_2}} \le 2$ for the same reason.
The norm is the largest eigenvalue, therefore:

$$\begin{aligned}
    \Norm{\hat{S}^2}
    \le 4 + 2 \cdot 2
    = 8
    \quad \implies \quad
    \Norm{\hat{S}}
    \le \sqrt{8}
    = 2 \sqrt{2}
\end{aligned}$$

We thus arrive at **Tsirelson's bound**,
which states that quantum mechanics can violate
the CHSH inequality by a factor of $\sqrt{2}$:

$$\begin{aligned}
    \boxed{
        |S|
        \le 2 \sqrt{2}
    }
\end{aligned}$$

Importantly, this is a *tight* bound,
meaning that there exist certain spin measurement directions
for which Tsirelson's bound becomes an equality, for example:

$$\begin{aligned}
    \hat{A}_1 = \hat{\sigma}_z
    \qquad
    \hat{A}_2 = \hat{\sigma}_x
    \qquad
    \hat{B}_1 = \frac{\hat{\sigma}_z + \hat{\sigma}_x}{\sqrt{2}}
    \qquad
    \hat{B}_2 = \frac{\hat{\sigma}_z - \hat{\sigma}_x}{\sqrt{2}}
\end{aligned}$$

Using the fact that $\Expval{A_a B_b} = - \vec{a} \cdot \vec{b}$,
it can then be shown that $S = 2 \sqrt{2}$ in this case.



## References
1.  D.J. Griffiths, D.F. Schroeter,
    *Introduction to quantum mechanics*, 3rd edition,
    Cambridge.
2.  J.B. Brask,
    *Quantum information: lecture notes*,
    2021, unpublished.