1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
---
title: "Berry phase"
sort_title: "Berry phase"
date: 2021-11-29
categories:
- Physics
- Quantum mechanics
layout: "concept"
---
Consider a Hamiltonian $$\hat{H}$$ that does not explicitly depend on time,
but does depend on a given parameter $$\vb{R}$$.
The Schrödinger equations then read:
$$\begin{aligned}
i \hbar \dv{}{t}\Ket{\Psi_n(t)}
&= \hat{H}(\vb{R}) \Ket{\Psi_n(t)}
\\
\hat{H}(\vb{R}) \Ket{\psi_n(\vb{R})}
&= E_n(\vb{R}) \Ket{\psi_n(\vb{R})}
\end{aligned}$$
The general full solution $$\Ket{\Psi_n}$$ has the following form,
where we allow $$\vb{R}$$ to evolve in time,
and we have abbreviated the traditional phase of the "wiggle factor" as $$L_n$$:
$$\begin{aligned}
\Ket{\Psi_n(t)}
= \exp(i \gamma_n(t)) \exp(-i L_n(t) / \hbar) \: \Ket{\psi_n(\vb{R}(t))}
\qquad
L_n(t) \equiv \int_0^t E_n(\vb{R}(t')) \dd{t'}
\end{aligned}$$
The **geometric phase** $$\gamma_n(t)$$ is more interesting.
It is not included in $$\Ket{\psi_n}$$,
because it depends on the path $$\vb{R}(t)$$
rather than only the present $$\vb{R}$$ and $$t$$.
Its dynamics can be found by inserting the above $$\Ket{\Psi_n}$$
into the time-dependent Schrödinger equation:
$$\begin{aligned}
\dv{}{t}\Ket{\Psi_n}
&= i \dv{\gamma_n}{t} \Ket{\Psi_n} - \frac{i}{\hbar} \dv{L_n}{t} \Ket{\Psi_n}
+ \exp(i \gamma_n) \exp(-i L_n / \hbar) \dv{}{t}\Ket{\psi_n}
\\
&= i \dv{\gamma_n}{t} \Ket{\Psi_n} + \frac{1}{i \hbar} E_n \Ket{\Psi_n}
+ \exp(i \gamma_n) \exp(-i L_n / \hbar) \: \Ket{\nabla_\vb{R} \psi_n} \cdot \dv{\vb{R}}{t}
\\
&= i \dv{\gamma_n}{t} \Ket{\Psi_n} + \frac{1}{i \hbar} \hat{H} \Ket{\Psi_n}
+ \exp(i \gamma_n) \exp(-i L_n / \hbar) \: \Ket{\nabla_\vb{R} \psi_n} \cdot \dv{\vb{R}}{t}
\end{aligned}$$
Here we recognize the Schrödinger equation, so those terms cancel.
We are then left with:
$$\begin{aligned}
- i \dv{\gamma_n}{t} \Ket{\Psi_n}
&= \exp(i \gamma_n) \exp(-i L_n / \hbar) \: \Ket{\nabla_\vb{R} \psi_n} \cdot \dv{\vb{R}}{t}
\end{aligned}$$
Front-multiplying by $$i \Bra{\Psi_n}$$ gives us
the equation of motion of the geometric phase $$\gamma_n$$:
$$\begin{aligned}
\boxed{
\dv{\gamma_n}{t}
= - \vb{A}_n(\vb{R}) \cdot \dv{\vb{R}}{t}
}
\end{aligned}$$
Where we have defined the so-called **Berry connection** $$\vb{A}_n$$ as follows:
$$\begin{aligned}
\boxed{
\vb{A}_n(\vb{R})
\equiv -i \Inprod{\psi_n(\vb{R})}{\nabla_\vb{R} \psi_n(\vb{R})}
}
\end{aligned}$$
Importantly, note that $$\vb{A}_n$$ is real,
provided that $$\Ket{\psi_n}$$ is always normalized for all $$\vb{R}$$.
To prove this, we start from the fact that $$\nabla_\vb{R} 1 = 0$$:
$$\begin{aligned}
0
&= \nabla_\vb{R} \Inprod{\psi_n}{\psi_n}
= \Inprod{\nabla_\vb{R} \psi_n}{\psi_n} + \Inprod{\psi_n}{\nabla_\vb{R} \psi_n}
\\
&= \Inprod{\psi_n}{\nabla_\vb{R} \psi_n}^* + \Inprod{\psi_n}{\nabla_\vb{R} \psi_n}
= 2 \Real\{ - i \vb{A}_n \}
= 2 \Imag\{ \vb{A}_n \}
\end{aligned}$$
Consequently, $$\vb{A}_n = \Imag \Inprod{\psi_n}{\nabla_\vb{R} \psi_n}$$ is always real,
because $$\Inprod{\psi_n}{\nabla_\vb{R} \psi_n}$$ is imaginary.
Suppose now that the parameter $$\vb{R}(t)$$ is changed adiabatically
(i.e. so slow that the system stays in the same eigenstate)
for $$t \in [0, T]$$, along a circuit $$C$$ with $$\vb{R}(0) \!=\! \vb{R}(T)$$.
Integrating the phase $$\gamma_n(t)$$ over this contour $$C$$ then yields
the **Berry phase** $$\gamma_n(C)$$:
$$\begin{aligned}
\boxed{
\gamma_n(C)
= - \oint_C \vb{A}_n(\vb{R}) \cdot \dd{\vb{R}}
}
\end{aligned}$$
But we have a problem: $$\vb{A}_n$$ is not unique!
Due to the Schrödinger equation's gauge invariance,
any function $$f(\vb{R}(t))$$ can be added to $$\gamma_n(t)$$
without making an immediate physical difference to the state.
Consider the following general gauge transformation:
$$\begin{aligned}
\ket{\tilde{\psi}_n(\vb{R})}
\equiv \exp(i f(\vb{R})) \: \Ket{\psi_n(\vb{R})}
\end{aligned}$$
To find $$\vb{A}_n$$ for a particular choice of $$f$$,
we need to evaluate the inner product
$$\inprod{\tilde{\psi}_n}{\nabla_\vb{R} \tilde{\psi}_n}$$:
$$\begin{aligned}
\inprod{\tilde{\psi}_n}{\nabla_\vb{R} \tilde{\psi}_n}
&= \exp(i f) \Big( i \nabla_\vb{R} f \: \inprod{\tilde{\psi}_n}{\psi_n} + \inprod{\tilde{\psi}_n}{\nabla_\vb{R} \psi_n} \Big)
\\
&= i \nabla_\vb{R} f \: \inprod{\psi_n}{\psi_n} + \inprod{\psi_n}{\nabla_\vb{R} \psi_n}
\\
&= i \nabla_\vb{R} f + \inprod{\psi_n}{\nabla_\vb{R} \psi_n}
\end{aligned}$$
Unfortunately, $$f$$ does not vanish as we would have liked,
so $$\vb{A}_n$$ depends on our choice of $$f$$.
However, the curl of a gradient is always zero,
so although $$\vb{A}_n$$ is not unique,
its curl $$\nabla_\vb{R} \cross \vb{A}_n$$ is guaranteed to be.
Conveniently, we can introduce a curl in the definition of $$\gamma_n(C)$$
by applying Stokes' theorem, under the assumption
that $$\vb{A}_n$$ has no singularities in the area enclosed by $$C$$
(fortunately, $$\vb{A}_n$$ can always be chosen to satisfy this):
$$\begin{aligned}
\boxed{
\gamma_n(C)
= - \iint_{S(C)} \vb{B}_n(\vb{R}) \cdot \dd{\vb{S}}
}
\end{aligned}$$
Where we defined $$\vb{B}_n$$ as the curl of $$\vb{A}_n$$.
Now $$\gamma_n(C)$$ is guaranteed to be unique.
Note that $$\vb{B}_n$$ is analogous to a magnetic field,
and $$\vb{A}_n$$ to a magnetic vector potential:
$$\begin{aligned}
\vb{B}_n(\vb{R})
\equiv \nabla_\vb{R} \cross \vb{A}_n(\vb{R})
= \Imag\!\Big\{ \nabla_\vb{R} \cross \Inprod{\psi_n(\vb{R})}{\nabla_\vb{R} \psi_n(\vb{R})} \Big\}
\end{aligned}$$
Unfortunately, $$\nabla_\vb{R} \psi_n$$ is difficult to evaluate explicitly,
so we would like to rewrite $$\vb{B}_n$$ such that it does not enter.
We do this as follows, inserting $$1 = \sum_{m} \Ket{\psi_m} \Bra{\psi_m}$$ along the way:
$$\begin{aligned}
i \vb{B}_n
= \nabla_\vb{R} \cross \Inprod{\psi_n}{\nabla_\vb{R} \psi_n}
&= \Inprod{\psi_n}{\nabla_\vb{R} \cross \nabla_\vb{R} \psi_n} + \Bra{\nabla_\vb{R} \psi_n} \cross \Ket{\nabla_\vb{R} \psi_n}
\\
&= \sum_{m} \Inprod{\nabla_\vb{R} \psi_n}{\psi_m} \cross \Inprod{\psi_m}{\nabla_\vb{R} \psi_n}
\end{aligned}$$
The fact that $$\Inprod{\psi_n}{\nabla_\vb{R} \psi_n}$$ is imaginary
means it is parallel to its complex conjugate,
and thus the cross product vanishes, so we exclude $$n$$ from the sum:
$$\begin{aligned}
\vb{B}_n
&= \sum_{m \neq n} \Inprod{\nabla_\vb{R} \psi_n}{\psi_m} \cross \Inprod{\psi_m}{\nabla_\vb{R} \psi_n}
\end{aligned}$$
From the [Hellmann-Feynman theorem](/know/concept/hellmann-feynman-theorem/),
we know that the inner products can be rewritten:
$$\begin{aligned}
\Inprod{\psi_m}{\nabla_\vb{R} \psi_n}
= \frac{\matrixel{\psi_n}{\nabla_\vb{R} \hat{H}}{\psi_m}}{E_n - E_m}
\end{aligned}$$
Where we have assumed that there is no degeneracy.
This leads to the following result:
$$\begin{aligned}
\boxed{
\vb{B}_n
= \Imag \sum_{m \neq n}
\frac{\matrixel{\psi_n}{\nabla_\vb{R} \hat{H}}{\psi_m} \cross \matrixel{\psi_m}{\nabla_\vb{R} \hat{H}}{\psi_n}}{(E_n - E_m)^2}
}
\end{aligned}$$
Which only involves $$\nabla_\vb{R} \hat{H}$$,
and is therefore easier to evaluate than any $$\Ket{\nabla_\vb{R} \psi_n}$$.
## References
1. M.V. Berry,
[Quantal phase factors accompanying adiabatic changes](https://doi.org/10.1098/rspa.1984.0023),
1984, Royal Society.
2. G. Grosso, G.P. Parravicini,
*Solid state physics*,
2nd edition, Elsevier.
|