summaryrefslogtreecommitdiff
path: root/source/know/concept/bloch-sphere/index.md
blob: b348d22771cb3b9b092928e8344678d4bc56860b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
title: "Bloch sphere"
sort_title: "Bloch sphere"
date: 2021-03-09
categories:
- Quantum mechanics
- Quantum information
- Two-level system
layout: "concept"
---

In quantum mechanics, particularly quantum information,
the **Bloch sphere** is an invaluable tool to visualize qubits.
All pure qubit states are represented by a point on the sphere's surface:

{% include image.html file="sketch-full.png" width="67%"
    alt="Bloch sphere" %}

The $$x$$, $$y$$ and $$z$$-axes represent the components of a spin-1/2-alike system,
and their extremes are the eigenstates of the Pauli matrices:

$$\begin{aligned}
    \hat{\sigma}_z
    \to \{\ket{0}, \ket{1}\}
    \qquad
    \hat{\sigma}_x
    \to \{\ket{+}, \ket{-}\}
    \qquad
    \hat{\sigma}_y
    \to \{\ket{+i}, \ket{-i}\}
\end{aligned}$$

Where the latter two pairs are expressed as follows in the conventional $$z$$-basis:

$$\begin{aligned}
    \ket{\pm}
    = \frac{\ket{0} \pm \ket{1}}{\sqrt{2}}
    \qquad \qquad
    \ket{\pm i}
    = \frac{\ket{0} \pm i \ket{1}}{\sqrt{2}}
\end{aligned}$$

More generally, every point on the surface of the sphere
describes a pure qubit state in terms of the angles $$\theta$$ and $$\varphi$$,
respectively the elevation and azimuth:

$$\begin{aligned}
    \ket{\Psi} = \cos\!\Big(\frac{\theta}{2}\Big) \ket{0} + \exp(i \varphi) \sin\!\Big(\frac{\theta}{2}\Big) \ket{1}
\end{aligned}$$

Another way to describe states is the **Bloch vector** $$\vec{r}$$,
which is simply the $$(x,y,z)$$-coordinates of a point on the sphere.
Let the radius $$r \le 1$$:

$$\begin{aligned}
    \boxed{
        \vec{r}
        = \begin{bmatrix} r_x \\ r_y \\ r_z \end{bmatrix}
        = \begin{bmatrix} r \sin\theta \cos\varphi \\ r \sin\theta \sin\varphi \\ r \cos\theta \end{bmatrix}
    }
\end{aligned}$$

Note that $$\vec{r}$$ is not actually a qubit state,
but rather a description of one.
The main point of the Bloch vector is that it allows us
to describe the qubit using a [density operator](/know/concept/density-operator/):

$$\begin{aligned}
    \boxed{
        \hat{\rho}
        = \frac{1}{2} \Big( \hat{I} + \vec{r} \cdot \vec{\sigma} \Big)
    }
\end{aligned}$$

Where $$\vec{\sigma} = (\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z)$$ is the Pauli "vector".
Now, we know that a density matrix represents a pure ensemble
if and only if it is idempotent, i.e. $$\hat{\rho}^2 = \hat{\rho}$$:

$$\begin{aligned}
    \hat{\rho}^2
    &= \frac{1}{4} \Big( \hat{I}^2 + 2 \hat{I} (\vec{r} \cdot \vec{\sigma}) + (\vec{r} \cdot \vec{\sigma})^2 \Big)
    = \frac{1}{4} \Big( \hat{I} + 2 (\vec{r} \cdot \vec{\sigma}) + (\vec{r} \cdot \vec{\sigma})^2 \Big)
\end{aligned}$$

You can easily convince yourself that, if $$(\vec{r} \cdot \vec{\sigma})^2 = \hat{I}$$,
we get $$\hat{\rho}$$ again, so the state is pure:

$$\begin{aligned}
    (\vec{r} \cdot \vec{\sigma})^2
    &= (r_x \hat{\sigma}_x + r_y \hat{\sigma}_y + r_z \hat{\sigma}_z)^2
    \\
    &= r_x^2 \hat{\sigma}_x^2 + r_x r_y \hat{\sigma}_x \hat{\sigma}_y + r_x r_z \hat{\sigma}_x \hat{\sigma}_z
    + r_x r_y \hat{\sigma}_y \hat{\sigma}_x + r_y^2 \hat{\sigma}_y^2
    \\
    &\quad + r_y r_z \hat{\sigma}_y \hat{\sigma}_z + r_x r_z \hat{\sigma}_z \hat{\sigma}_x
    + r_y r_z \hat{\sigma}_z \hat{\sigma}_y + r_z^2 \hat{\sigma}_z^2
    \\
    &= r_x^2 \hat{I} + r_y^2 \hat{I} + r_z^2 \hat{I}
    + r_x r_y \{ \hat{\sigma}_x,  \hat{\sigma}_y \}
    + r_y r_z \{ \hat{\sigma}_y,  \hat{\sigma}_z \}
    + r_x r_z \{ \hat{\sigma}_x,  \hat{\sigma}_z \}
    \\
    &= (r_x^2 + r_y^2 + r_z^2) \hat{I}
    = r^2 \hat{I}
\end{aligned}$$

Therefore, if the radius $$r = 1$$, the ensemble is pure,
else if $$r < 1$$ it is mixed.

Another useful property of the Bloch vector
is that the expectation value of the Pauli matrices
are given by the corresponding component of $$\vec{r}$$:

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            \expval{\hat{\sigma}_{x}}
            &= r_{x}
            \\
            \expval{\hat{\sigma}_{y}}
            &= r_{y}
            \\
            \expval{\hat{\sigma}_{z}}
            &= r_{z}
        \end{aligned}
    }
\end{aligned}$$

This is a consequence of the above form of the density operator $$\hat{\rho}$$.
For example for $$\hat{\sigma}_z$$:

$$\begin{aligned}
    \expval{\hat{\sigma}_z}
    &= \Tr(\hat{\rho} \hat{\sigma}_z)
    = \frac{1}{2} \Tr\!\big(\hat{\sigma}_z + (\vec{r} \cdot \vec{\sigma}) \hat{\sigma}_z \big)
    = \frac{1}{2} \Tr\!\big( (r_x \hat{\sigma}_x + r_y \hat{\sigma}_y + r_z \hat{\sigma}_z) \hat{\sigma}_z \big)
    \\
    &= \frac{1}{2} \Tr\!\big( r_x \hat{\sigma}_x \hat{\sigma}_z + r_y \hat{\sigma}_y \hat{\sigma}_z + r_z \hat{\sigma}_z^2 \big)
    = \frac{1}{2} \Tr\!\big( r_z \hat{I} \big)
    = r_z
\end{aligned}$$



## References
1.  N. Brunner,
    *Quantum information theory: lecture notes*,
    2019, unpublished.
2.  J.B. Brask,
    *Quantum information: lecture notes*,
    2021, unpublished.