1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
---
title: "Boltzmann equation"
sort_title: "Boltzmann equation"
date: 2022-10-02
categories:
- Physics
- Thermodynamics
- Fluid mechanics
layout: "concept"
---
Consider a collection of particles,
each with its own position $$\vb{r}$$ and velocity $$\vb{v}$$.
We can thus define a probability density function $$f(\vb{r}, \vb{v}, t)$$
describing the expected particle count at $$(\vb{r}, \vb{v})$$ at time $$t$$.
Let the total number of particles $$N$$ be conserved, then clearly:
$$\begin{aligned}
N = \iint_{-\infty}^\infty f(\vb{r}, \vb{v}, t) \dd{\vb{r}} \dd{\vb{v}}
\end{aligned}$$
At equilibrium, all processes affecting the particles
no longer have a net effect, so $$f$$ is fixed:
$$\begin{aligned}
\dv{f}{t}
= 0
\end{aligned}$$
If each particle's momentum only changes due to collisions,
then a non-equilibrium state can be described as follows, very generally:
$$\begin{aligned}
\dv{f}{t}
= \bigg(\! \pdv{f}{t} \!\bigg)_\mathrm{\!col}
\end{aligned}$$
Where the right-hand side simply means "all changes in $$f$$ due to collisions".
Applying the chain rule to the left-hand side then yields:
$$\begin{aligned}
\bigg(\! \pdv{f}{t} \!\bigg)_\mathrm{\!col}
&= \pdv{f}{t} + \bigg( \pdv{f}{x} \dv{x}{t} \!+\! \pdv{f}{y} \dv{y}{t} \!+\! \pdv{f}{z} \dv{z}{t} \bigg)
+ \bigg( \pdv{f}{v_x} \dv{v_x}{t} \!+\! \pdv{f}{v_y} \dv{v_y}{t} \!+\! \pdv{f}{v_z} \dv{v_z}{t} \bigg)
\\
&= \pdv{f}{t} + \bigg( v_x \pdv{f}{x} \!+\! v_y \pdv{f}{y} \!+\! v_z \pdv{f}{z} \bigg)
+ \bigg( a_x \pdv{f}{v_x} \!+\! a_y \pdv{f}{v_y} \!+\! a_z \pdv{f}{v_z} \bigg)
\\
&= \pdv{f}{t} + \vb{v} \cdot \nabla f + \vb{a} \cdot \pdv{f}{\vb{v}}
\end{aligned}$$
Where we have introduced the shorthand $$\ipdv{f}{\vb{v}}$$.
Inserting Newton's second law $$\vb{F} = m \vb{a}$$
leads us to the **Boltzmann equation** or
**Boltzmann transport equation** (BTE):
$$\begin{aligned}
\boxed{
\pdv{f}{t} + \vb{v} \cdot \nabla f + \frac{\vb{F}}{m} \cdot \pdv{f}{\vb{v}}
= \bigg(\! \pdv{f}{t} \!\bigg)_\mathrm{\!col}
}
\end{aligned}$$
But what about the collision term?
Expressions for it exist, which are almost exact in many cases,
but unfortunately also quite difficult to work with.
In addition, $$f$$ is a 7-dimensional function,
so the BTE is already hard to solve without collisions!
We only present the simplest case,
known as the **Bhatnagar-Gross-Krook approximation**:
if the equilibrium state $$f_0(\vb{r}, \vb{v})$$ is known,
then each collision brings the system closer to $$f_0$$:
$$\begin{aligned}
\pdv{f}{t} + \vb{v} \cdot \nabla f + \frac{\vb{F}}{m} \cdot \pdv{f}{\vb{v}}
= \frac{f_0 - f}{\tau}
\end{aligned}$$
Where $$\tau$$ is the average collision period.
The right-hand side is called the **Krook term**.
## Moment equations
From the definition of $$f$$,
we see that integrating over all $$\vb{v}$$ yields the particle density $$n$$:
$$\begin{aligned}
n(\vb{r}, t) = \int_{-\infty}^\infty f(\vb{r}, \vb{v}, t) \dd{\vb{v}}
\end{aligned}$$
Consequently, a purely velocity-dependent quantity $$Q(\vb{v})$$ can be averaged like so:
$$\begin{aligned}
\Expval{Q}
= \frac{1}{n} \int_{-\infty}^\infty Q(\vb{r}, \vb{v}, t) \: f(\vb{r}, \vb{v}, t) \dd{\vb{v}}
\end{aligned}$$
With that in mind, we multiply the collisionless BTE equation by $$Q(\vb{v})$$ and integrate,
assuming that $$\vb{F}$$ does not depend on $$\vb{v}$$:
$$\begin{aligned}
0
&= \int_{-\infty}^\infty Q \bigg( \pdv{f}{t} + \vb{v} \cdot \nabla f + \frac{\vb{F}}{m} \cdot \pdv{f}{\vb{v}} \bigg) \dd{\vb{v}}
\\
&= \int Q \pdv{f}{t} \dd{\vb{v}} + \int (\vb{v} \cdot \nabla f) \: Q \dd{\vb{v}} + \frac{\vb{F}}{m} \cdot \int Q \pdv{f}{\vb{v}} \dd{\vb{v}}
\\
&= \pdv{}{t}\int Q f \dd{\vb{v}} + \int \Big( \nabla \cdot (\vb{v} f) - f (\nabla \cdot \vb{v}) \Big) Q \dd{\vb{v}}
+ \frac{\vb{F}}{m} \cdot \int \bigg( \pdv{}{\vb{v}} (Q f) - f \pdv{Q}{\vb{v}} \bigg) \dd{\vb{v}}
\end{aligned}$$
The first integral is simply $$n \Expval{Q}$$.
In the second integral, note that $$\vb{v}$$ is a coordinate
and hence not dependent on $$\vb{r}$$, so $$\nabla \cdot \vb{v} = 0$$.
Since $$f$$ is a probability density, $$f \to 0$$ for $$\vb{v} \to \pm\infty$$,
so the first term in the third integral vanishes after it is integrated:
$$\begin{aligned}
0
&= \pdv{}{t}\big(n \Expval{Q}\big) + \int \nabla \cdot (\vb{v} f) \: Q \dd{\vb{v}}
+ \frac{\vb{F}}{m} \cdot \bigg( \Big[ Q f \Big]_{-\infty}^\infty - \int f \pdv{Q}{\vb{v}} \dd{\vb{v}} \bigg)
\\
&= \pdv{}{t}\big(n \Expval{Q}\big) + \nabla \cdot \int Q \vb{v} f \dd{\vb{v}}
- \frac{\vb{F}}{m} \cdot \int f \pdv{Q}{\vb{v}} \dd{\vb{v}}
\end{aligned}$$
We thus arrive at the prototype of the BTE's so-called **moment equations**:
$$\begin{aligned}
\boxed{
0
= \pdv{}{t}\big(n \Expval{Q}\big) + \nabla \cdot \big(n \Expval{Q \vb{v}}\big) - \frac{\vb{F}}{m} \cdot \bigg( n \Expval{\pdv{Q}{\vb{v}}} \bigg)
}
\end{aligned}$$
If we set $$Q = m$$, then the mass density $$\rho = n \Expval{Q}$$,
and we find that the **zeroth moment** of the BTE describes conservation of mass,
where $$\vb{V} \equiv \Expval{\vb{v}} = \int \vb{v} f \dd{\vb{v}}$$ is the fluid velocity:
$$\begin{aligned}
\boxed{
0
= \pdv{\rho}{t} + \nabla \cdot \big(\rho \vb{V}\big)
}
\end{aligned}$$
{% include proof/start.html id="proof-moment0" -%}
We insert $$Q = m$$ into our prototype,
and since $$m$$ is constant, the rest is trivial:
$$\begin{aligned}
0
&= \pdv{}{t}\big(n \Expval{m}\big) + \nabla \cdot \big(n \Expval{m \vb{v}}\big) - \frac{\vb{F}}{m} \cdot \bigg( n \Expval{\pdv{m}{\vb{v}}} \bigg)
\\
&= \pdv{\rho}{t} + \nabla \cdot \big(\rho \Expval{\vb{v}}\big) - 0
\end{aligned}$$
{% include proof/end.html id="proof-moment0" %}
If we instead choose the momentum $$Q = m \vb{v}$$,
we find that the **first moment** of the BTE describes conservation of momentum,
where $$\hat{P}$$ is the [Cauchy stress tensor](/know/concept/cauchy-stress-tensor/):
$$\begin{aligned}
\boxed{
0
= \pdv{}{t}\big(\rho \vb{V}\big) + \rho \vb{V} (\nabla \cdot \vb{V}) + \nabla \cdot \hat{P} - n \vb{F}
}
\end{aligned}$$
{% include proof/start.html id="proof-moment1" -%}
We insert $$Q = m \vb{v}$$ into our prototype and recognize $$\rho$$ wherever possible:
$$\begin{aligned}
0
&= \pdv{}{t}\big(n \Expval{m \vb{v}}\big) + \nabla \cdot \big(n \Expval{m \vb{v} \vb{v}}\big)
- \frac{\vb{F}}{m} \cdot \bigg( n \Expval{\pdv{(m \vb{v})}{\vb{v}}} \bigg)
\\
&= \pdv{}{t}\big(\rho \Expval{\vb{v}}\big) + \nabla \cdot \big(\rho \Expval{\vb{v} \vb{v}}\big)
- \vb{F} \cdot \bigg( n \Expval{\pdv{\vb{v}}{\vb{v}}} \bigg)
\end{aligned}$$
With $$\vb{v} \vb{v}$$ being a dyadic product.
To give it a physical interpretation,
we split $$\vb{v} = \vb{V} \!+\! \vb{w}$$,
where $$\vb{V}$$ is the average velocity vector,
and $$\vb{w}$$ is the local deviation from $$\vb{V}$$:
$$\begin{aligned}
\Expval{\vb{v} \vb{v}}
&= \Expval{(\vb{V} \!+\! \vb{w}) (\vb{V} \!+\! \vb{w})}
= \Expval{\vb{V} \vb{V} + 2 \vb{V} \vb{w} + \vb{w} \vb{w}}
= \vb{V} \vb{V} + 2 \vb{V} \Expval{\vb{w}} + \Expval{\vb{w} \vb{w}}
\end{aligned}$$
Since $$\vb{w}$$ represents a deviation from the mean, $$\Expval{\vb{w}} = 0$$.
We define the pressure tensor:
$$\begin{aligned}
\hat{P}
\equiv \rho \Expval{\vb{w} \vb{w}}
= \rho \Expval{(\vb{v} \!-\! \vb{V}) (\vb{v} \!-\! \vb{V})}
\end{aligned}$$
This leads to the desired result,
where $$\nabla \cdot (\rho \vb{V}\vb{V})$$ is the fluid momentum,
and $$\nabla \cdot \hat{P}$$ is the viscous/pressure momentum:
$$\begin{aligned}
0
&= \pdv{}{t}\big(\rho \vb{V}\big) + \nabla \cdot \big(\rho \vb{V} \vb{V} + \hat{P}\big) - n \vb{F}
\end{aligned}$$
{% include proof/end.html id="proof-moment1" %}
Finally, if we choose the kinetic energy $$Q = m |\vb{v}|^2 / 2$$,
we find that the **second moment** gives conservation of energy,
where $$U$$ is the thermal energy density and $$\vb{J}$$ is the heat flux:
$$\begin{aligned}
\boxed{
0
= \pdv{}{t}\bigg(\frac{\rho}{2} |\vb{V}|^2 + U \bigg)
+ \nabla \cdot \bigg(\frac{\rho}{2} |\vb{V}|^2 \vb{V} + \vb{V} \cdot \hat{P} + U \vb{V} + \vb{J} \bigg)
- \vb{F} \cdot \big( n \vb{V} \big)
}
\end{aligned}$$
{% include proof/start.html id="proof-moment2" -%}
We insert $$Q = m |\vb{v}|^2 / 2$$ into our prototype and recognize $$\rho$$ wherever possible:
$$\begin{aligned}
0
&= \pdv{}{t}\bigg(n \Expval{\frac{m |\vb{v}|^2}{2}}\bigg)
+ \nabla \cdot \bigg(n \Expval{\frac{m |\vb{v}|^2}{2} \vb{v}}\bigg)
- \frac{\vb{F}}{m} \cdot \bigg( n \Expval{\pdv{}{\vb{v}} \frac{m |\vb{v}|^2}{2}} \bigg)
\\
&= \pdv{}{t}\bigg(\frac{\rho}{2} \Expval{|\vb{v}|^2}\bigg)
+ \nabla \cdot \bigg(\frac{\rho}{2} \Expval{|\vb{v}|^2 \vb{v}}\bigg)
- \frac{\vb{F}}{2} \cdot \bigg( n \Expval{\pdv{|\vb{v}|^2}{\vb{v}}} \bigg)
\end{aligned}$$
We handle these terms one by one. Substituting $$\vb{v} = \vb{V} + \vb{w}$$ in the first gives:
$$\begin{aligned}
\Expval{|\vb{v}|^2}
&= \Expval{(\vb{V} \!+\! \vb{w}) \cdot (\vb{V} \!+\! \vb{w})}
= \Expval{|\vb{V}|^2 + 2 \vb{V} \cdot \vb{w} + |\vb{w}|^2}
\\
&= |\vb{V}|^2 + 2 \vb{V} \cdot \Expval{\vb{w}} + \Expval{|\vb{w}|^2}
= |\vb{V}|^2 + \Expval{|\vb{w}|^2}
\end{aligned}$$
And likewise for the second term,
where we recognize the stress tensor $$\Expval{\vb{w} \vb{w}}$$:
$$\begin{aligned}
\Expval{|\vb{v}|^2 \vb{v}}
&= \Expval{(\vb{V} \!+\! \vb{w}) \cdot (\vb{V} \!+\! \vb{w}) (\vb{V} \!+\! \vb{w})}
= \Expval{(|\vb{V}|^2 + 2 \vb{V} \cdot \vb{w} + |\vb{w}|^2) (\vb{V} \!+\! \vb{w})}
\\
&= \Expval{|\vb{V}|^2 \vb{V} + |\vb{V}|^2 \vb{w}
+ 2 (\vb{V} \cdot \vb{w}) \vb{V} + 2 (\vb{V} \cdot \vb{w}) \vb{w}
+ |\vb{w}|^2 \vb{V} + |\vb{w}|^2 \vb{w}}
\\
&= |\vb{V}|^2 \vb{V} + |\vb{V}|^2 \Expval{\vb{w}}
+ 2 (\vb{V} \cdot \Expval{\vb{w}}) \vb{V} + 2 \Expval{(\vb{V} \cdot \vb{w}) \vb{w}}
+ \Expval{|\vb{w}|^2} \vb{V} + \Expval{|\vb{w}|^2 \vb{w}}
\\
&= |\vb{V}|^2 \vb{V} + 0 + 0 + 2 \vb{V} \cdot \Expval{\vb{w} \vb{w}}
+ \Expval{|\vb{w}|^2} \vb{V} + \Expval{|\vb{w}|^2 \vb{w}}
\end{aligned}$$
The third term is fairly obvious, but we calculate it rigorously just to be safe:
$$\begin{aligned}
\pdv{|\vb{v}|^2}{\vb{v}}
&= \pdv{}{\vb{v}} \big( v_x^2 + v_y^2 + v_z^2 \big)
= \vu{e}_x \pdv{v_x^2}{v_x} + \vu{e}_y \pdv{v_y^2}{v_y} + \vu{e}_z \pdv{v_z^2}{v_z}
= 2 \vb{v}
\end{aligned}$$
To clarify the physical interpretation,
we define $$U$$, $$\vb{J}$$ and $$\hat{P}$$ as follows:
$$\begin{aligned}
U
&\equiv \frac{\rho}{2} \Expval{|\vb{w}|^2}
= \frac{\rho}{2} \Expval{(\vb{v} \!-\! \vb{V}) \cdot (\vb{v} \!-\! \vb{V})}
\\
\vb{J}
&\equiv \frac{\rho}{2} \Expval{|\vb{w}|^2 \vb{w}}
= \frac{\rho}{2} \Expval{(\vb{v} \!-\! \vb{V}) \cdot (\vb{v} \!-\! \vb{V})(\vb{v} \!-\! \vb{V})}
\\
\hat{P}
&\equiv \rho \Expval{\vb{w} \vb{w}}
= \rho \Expval{(\vb{v} \!-\! \vb{V}) (\vb{v} \!-\! \vb{V})}
\end{aligned}$$
Putting it all together, we arrive at the expected result, namely:
$$\begin{aligned}
0
&= \pdv{}{t}\bigg(\frac{\rho}{2} |\vb{V}|^2 + U \bigg)
+ \nabla \cdot \bigg(\frac{\rho}{2} |\vb{V}|^2 \vb{V} + \vb{V} \cdot \hat{P} + U \vb{V} + \vb{J} \bigg)
- \vb{F} \cdot \big( n \vb{V} \big)
\end{aligned}$$
For the sake of clarity, we write out the pressure term, including the outer divergence:
$$\begin{aligned}
\nabla \cdot (\vb{V} \cdot \hat{P})
&= (\nabla \cdot \hat{P}{}^\top) \cdot \vb{V}
= \nabla \cdot
\begin{bmatrix}
P_{xx} & P_{xy} & P_{xz} \\
P_{yx} & P_{yy} & P_{yz} \\
P_{zx} & P_{zy} & P_{zz}
\end{bmatrix}
\cdot
\begin{bmatrix}
V_x \\ V_y \\ V_z
\end{bmatrix}
\\
&=
\begin{bmatrix}
\displaystyle \pdv{P_{xx}}{x} + \pdv{P_{xy}}{y} + \pdv{P_{xz}}{z} \\
\displaystyle \pdv{P_{yx}}{x} + \pdv{P_{yy}}{y} + \pdv{P_{yz}}{z} \\
\displaystyle \pdv{P_{zx}}{x} + \pdv{P_{zy}}{y} + \pdv{P_{zz}}{z}
\end{bmatrix}^{\top}
\cdot
\begin{bmatrix}
V_x \\ V_y \\ V_z
\end{bmatrix}
= \sum_{i=1}^{3} \sum_{j=1}^{3} \pdv{P_{ij}}{x_j} V_i
\end{aligned}$$
{% include proof/end.html id="proof-moment2" %}
## References
1. M. Salewski, A.H. Nielsen,
*Plasma physics: lecture notes*,
2021, unpublished.
|