summaryrefslogtreecommitdiff
path: root/source/know/concept/cartesian-coordinates/index.md
blob: a0bfc39db96c36828b66efb370dd698428d129e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
title: "Cartesian coordinates"
sort_title: "Cartesian coordinates"
date: 2023-06-09
categories:
- Mathematics
- Physics
layout: "concept"
---

This article is a supplement to the ones on
[orthogonal curvilinear systems](/know/concept/orthogonal-curvilinear-coordinates/),
[spherical coordinates](/know/concept/spherical-coordinates/),
[polar cylindrical coordinates](/know/concept/polar-cylindrical-coordinates/),
and [parabolic cylindrical coordinates](/know/concept/parabolic-cylindrical-coordinates/).

The well-known Cartesian coordinate system $$(x, y, z)$$
has trivial **scale factors**:

$$\begin{aligned}
    \boxed{
        h_x
        = h_y
        = h_z
        = 1
    }
\end{aligned}$$

With these, we can use the standard formulae for orthogonal curvilinear coordinates
to write out various vector calculus operations.



## Differential elements

For line integrals,
the tangent vector element $$\dd{\vb{\ell}}$$ for a curve is as follows:

$$\begin{aligned}
    \boxed{
        \dd{\vb{\ell}}
        = \vu{e}_x \dd{x}
        + \: \vu{e}_y \dd{y}
        + \: \vu{e}_z \dd{z}
    }
\end{aligned}$$

For surface integrals,
the normal vector element $$\dd{\vb{S}}$$ for a surface is given by:

$$\begin{aligned}
    \boxed{
        \dd{\vb{S}}
        = \vu{e}_x \dd{y} \dd{z}
        + \: \vu{e}_y \dd{x} \dd{z}
        + \: \vu{e}_z \dd{x} \dd{y}
    }
\end{aligned}$$

And for volume integrals,
the infinitesimal volume $$\dd{V}$$ takes the following form:

$$\begin{aligned}
    \boxed{
        \dd{V}
        = \dd{x} \dd{y} \dd{z}
    }
\end{aligned}$$



## Common operations

The basic vector operations (gradient, divergence, curl and Laplacian) are given by:

$$\begin{aligned}
    \boxed{
        \nabla f
        = \vu{e}_x \pdv{f}{x}
        + \vu{e}_y \pdv{f}{y}
        + \mathbf{e}_z \pdv{f}{z}
    }
\end{aligned}$$

$$\begin{aligned}
    \boxed{
        \nabla \cdot \vb{V}
        = \pdv{V_x}{x} + \pdv{V_y}{y} + \pdv{V_z}{z}
    }
\end{aligned}$$

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            \nabla \times \vb{V}
            &= \quad \vu{e}_x \bigg( \pdv{V_z}{y} - \pdv{V_y}{z} \bigg)
            \\
            &\quad\: + \vu{e}_y \bigg( \pdv{V_x}{z} - \pdv{V_z}{x} \bigg)
            \\
            &\quad\: + \vu{e}_z \bigg( \pdv{V_y}{x} - \pdv{V_x}{y} \bigg)
        \end{aligned}
    }
\end{aligned}$$

$$\begin{aligned}
    \boxed{
        \nabla^2 f
        = \pdvn{2}{f}{x} + \pdvn{2}{f}{y} + \pdvn{2}{f}{z}
    }
\end{aligned}$$



## Uncommon operations

Uncommon operations include:
the gradient of a divergence $$\nabla (\nabla \cdot \vb{V})$$,
the gradient of a vector $$\nabla \vb{V}$$,
the advection of a vector $$(\vb{U} \cdot \nabla) \vb{V}$$ with respect to $$\vb{U}$$,
the Laplacian of a vector $$\nabla^2 \vb{V}$$,
and the divergence of a 2nd-order tensor $$\nabla \cdot \overline{\overline{\vb{T}}}$$:

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            \nabla (\nabla \cdot \vb{V})
            &= \quad \vu{e}_x \bigg( \pdvn{2}{V_x}{x} + \mpdv{V_y}{x}{y} + \mpdv{V_z}{x}{z} \bigg)
            \\
            &\quad\: + \vu{e}_y \bigg( \mpdv{V_x}{y}{x} + \pdvn{2}{V_y}{y} + \mpdv{V_z}{y}{z} \bigg)
            \\
            &\quad\: + \vu{e}_z \bigg( \mpdv{V_x}{z}{x} + \mpdv{V_y}{z}{y} + \pdvn{2}{V_z}{z} \bigg)
        \end{aligned}
    }
\end{aligned}$$

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            \nabla \vb{V}
            &= \quad \vu{e}_x \vu{e}_x \pdv{V_x}{x}
            + \vu{e}_x \vu{e}_y \pdv{V_y}{x}
            + \vu{e}_x \vu{e}_z \pdv{V_z}{x}
            \\
            &\quad\: + \vu{e}_y \vu{e}_x \pdv{V_x}{y}
            + \vu{e}_y \vu{e}_y \pdv{V_y}{y}
            + \vu{e}_y \vu{e}_z \pdv{V_z}{y}
            \\
            &\quad\: + \vu{e}_z \vu{e}_x \pdv{V_x}{z}
            + \vu{e}_z \vu{e}_y \pdv{V_y}{z}
            + \vu{e}_z \vu{e}_z \pdv{V_z}{z}
        \end{aligned}
    }
\end{aligned}$$

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            (\vb{U} \cdot \nabla) \vb{V}
            &= \quad
            \vu{e}_x \bigg( U_x \pdv{V_x}{x} + U_y \pdv{V_x}{y} + U_z \pdv{V_x}{z} \bigg)
            \\
            &\quad\: + \vu{e}_y \bigg( U_x \pdv{V_y}{x} + U_y \pdv{V_y}{y} + U_z \pdv{V_y}{z} \bigg)
            \\
            &\quad\: + \vu{e}_z \bigg( U_x \pdv{V_z}{x} + U_y \pdv{V_z}{y} + U_z \pdv{V_z}{z} \bigg)
        \end{aligned}
    }
\end{aligned}$$

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            \nabla^2 \vb{V}
            &= \quad \vu{e}_x \bigg( \pdvn{2}{V_x}{x} + \pdvn{2}{V_x}{y} + \pdvn{2}{V_x}{z} \bigg)
            \\
            &\quad\: + \vu{e}_y \bigg( \pdvn{2}{V_y}{x} + \pdvn{2}{V_y}{y} + \pdvn{2}{V_y}{z} \bigg)
            \\
            &\quad\: + \vu{e}_z \bigg( \pdvn{2}{V_z}{x} + \pdvn{2}{V_z}{y} + \pdvn{2}{V_z}{z} \bigg)
        \end{aligned}
    }
\end{aligned}$$

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            \nabla \cdot \overline{\overline{\mathbf{T}}}
            &= \quad \vu{e}_x \bigg( \pdv{T_{xx}}{x} + \pdv{T_{yx}}{y} + \pdv{T_{zx}}{z} \bigg)
            \\
            &\quad\: + \vu{e}_y \bigg( \pdv{T_{xy}}{x} + \pdv{T_{yy}}{y} + \pdv{T_{zy}}{z} \bigg)
            \\
            &\quad\: + \vu{e}_z \bigg( \pdv{T_{xz}}{x} + \pdv{T_{yz}}{y} + \pdv{T_{zz}}{z} \bigg)
        \end{aligned}
    }
\end{aligned}$$



## References
1.  M.L. Boas,
    *Mathematical methods in the physical sciences*, 2nd edition,
    Wiley.