summaryrefslogtreecommitdiff
path: root/source/know/concept/cauchy-strain-tensor/index.md
blob: bae7bb8779b8f0a42596f001c36025e6f7f82f8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
---
title: "Cauchy strain tensor"
sort_title: "Cauchy strain tensor"
date: 2021-03-31
categories:
- Physics
- Continuum physics
layout: "concept"
---

**Strain** quantifies the deformation of a solid object.
If the body has been deformed, e.g. by pulling or bending,
its constituent particles have moved a bit.
Let $$\va{X}$$ be the original location of a particle,
and $$\va{x}$$ its new location after the deformation.
We can thus define the **displacement field** $$\va{u}$$:

$$\begin{aligned}
    \va{u}
    \equiv \va{x} - \va{X}
\end{aligned}$$

We restrict ourselves to **infinitesimal strain**,
where $$\va{u}$$ is so tiny that the material's properties are unchanged,
and a **slowly-varying strain**,
where the particle's neighbourhood has been distorted,
but not completely changed.

A key challenge when quantifying deformation
is that we need to somehow exclude movements of the *entire* body:
for example, you can bend a twig in your hands while walking or dancing,
but we are only interested in the twig's shape change,
not in your movements.
The above definition of $$\vu{u}$$ includes both,
so we should be careful how we extract the strain from it.


## Definition

We use the **Eulerian description** of deformation,
where the new position $$\va{x}$$ is the reference,
and the old position $$\va{X}$$ is expressed as a function of $$\va{x}$$:

$$\begin{aligned}
    \va{u}(\va{x})
    \equiv \va{x} - \va{X}(\va{x})
\end{aligned}$$

Let us choose two nearby points in the deformed solid,
and call them $$\va{x}$$ and $$\va{x} + \va{a}$$,
where $$\va{a}$$ is a tiny vector pointing from one to the other.
Before the displacement, those points respectively had these positions,
where we define $$\va{A}$$ as the "old" version of $$\va{a}$$:

$$\begin{aligned}
    \va{X} = \va{X}(\va{x})
    \qquad
    \va{X} + \va{A} = \va{X}(\va{x} + \va{a})
\end{aligned}$$

Because the new positions $$\va{x}$$ are our reference,
we would like to write $$\va{A}$$ without $$\va{X}$$.
To do so, we use the definition of $$\va{u}(\va{x})$$, yielding:

$$\begin{aligned}
    \va{A}
    &= \va{X}(\va{x} + \va{a}) - \va{X}(\va{x})
    \\
    &= \big( \va{x} + \va{a} - \va{u}(\va{x} + \va{a}) \big) - \big( \va{x} - \va{u}(\va{x}) \big)
    \\
    &= \va{a} - \va{u}(\va{x} + \va{a}) - \va{u}(\va{x})
\end{aligned}$$

Using the fact that $$\va{a}$$ is tiny by definition,
we expand the middle term to first order in $$\va{a}$$:

$$\begin{aligned}
    \va{u}(\va{x} + \va{a})
    \approx \va{u}(\va{x}) + a_x \pdv{\va{u}}{x} + a_y \pdv{\va{u}}{y} + a_z \pdv{\va{u}}{z}
    = \va{u}(\va{x}) + (\va{a} \cdot \nabla) \va{u}(\va{x})
\end{aligned}$$

With this, we can now define the "shift" $$\delta\va{a}$$
as the difference between $$\va{a}$$ and $$\va{A}$$ like so:

$$\begin{aligned}
    \delta{\va{a}}
    \equiv \va{a} - \va{A}
    = (\va{a} \cdot \nabla) \va{u}(\va{x})
\end{aligned}$$

In index notation, we write this expression as follows,
with $$\nabla_j \equiv \ipdv{}{x_j}$$ simply being the partial derivative
with respect to the $$j$$th coordinate:

$$\begin{aligned}
    \delta a_i
    = \sum_{j} a_j \nabla_j u_i
\end{aligned}$$

Where $$\nabla_j u_i$$ are called the **displacement gradients**,
and are just one step away from the desired definition of strain.
Note that these gradients are dimensionless,
so we can more formally define a *slowly-varying* displacement $$\va{u}(\va{x})$$
as one where $$|\nabla_j u_i| \ll 1$$.

Now, to solve the problem of macroscopic movements,
we take another tiny vector $$\va{b}$$ starting in the same point $$\va{x}$$ as $$\va{a}$$.
Here is the trick: if the whole body is uniformly translated or rotated,
the scalar product $$\va{a} \cdot \va{b}$$ is unchanged,
but if there is a non-uniform distortion, it changes.
We thus define the scalar product's difference like so:

$$\begin{aligned}
    \delta(\va{a} \cdot \va{b})
    \equiv \va{a} \cdot \va{b} - \va{A} \cdot \va{B}
\end{aligned}$$

Where $$\va{B}$$ is the old version of $$\va{b}$$.
Since these vectors are all tiny, we apply the product rule:

$$\begin{aligned}
    \delta(\va{a} \cdot \va{b})
    &= \delta\va{a} \cdot \va{b} + \va{a} \cdot \delta\va{b}
\end{aligned}$$

It is more informative to switch to index notation here.
Inserting $$\delta\va{a}$$ and $$\delta\va{b}$$ yields:

$$\begin{aligned}
    \delta(\va{a} \cdot \va{b})
    &= \sum_{i} \delta{a}_i \: b_i + \sum_{i} \delta{b}_i \: a_i
    \\
    &= \sum_{ij} \nabla_j u_i \: a_j b_i + \sum_{ij} \nabla_j u_i \: a_i b_j
    \\
    &= \sum_{ij} \big( \nabla_i u_j + \nabla_j u_i \big) \: a_i b_j
\end{aligned}$$

At last, we define the **Cauchy infinitesimal strain tensor** $$\hat{u}$$
such that it has $$u_{ij}$$ as components:

$$\begin{aligned}
    \boxed{
        u_{ij}
        \equiv \frac{1}{2} \big( \nabla_j u_i + \nabla_i u_j \big)
    }
\end{aligned}$$

Which allows us to rewrite the shift of the scalar product in the following compact way:

$$\begin{aligned}
    \delta(\va{a} \cdot \va{b})
    &= 2 \sum_{ij} u_{ij} a_i b_j
    = 2 \va{a} \cdot \hat{u} \cdot \va{b}
\end{aligned}$$

The Cauchy strain tensor $$\hat{u}$$ is a second-rank tensor,
and can alternatively be expressed like so:

$$\begin{aligned}
    \boxed{
        \hat{u}
        \equiv \frac{1}{2} \big( \nabla \va{u} + (\nabla \va{u})^\top \big)
    }
\end{aligned}$$

Where $$\top$$ is the transpose. Being defined from the scalar product,
all macroscopic movements of the body are removed from the tensor,
which turns out to make it symmetric, i.e. $$u_{ij} = u_{ji}$$.


## Geometry

So far we have used Cartesian coordinates,
but we can choose any three vectors $$\va{a}$$, $$\va{b}$$ and $$\va{c}$$,
and **project** $$\hat{u}$$ onto this basis.
For example, the component $$u_{ab}$$ then becomes:

$$\begin{aligned}
    \boxed{
        u_{ab}
        = \frac{\va{a} \cdot \hat{u} \cdot \va{b}}{\big|\va{a}\big| \big|\va{b}\big|}
    }
\end{aligned}$$

And so forth, for the other eight components.
The basis in which $$\hat{u}$$ is diagonal is the one formed by its eigenvectors,
and their directions are the **principal axes of strain**
at that point in the solid.
Because $$\hat{u}$$ is symmetric, such a basis always exists.

Given a vector $$\va{a}$$, its relative length change
due to the deformation is simply given by:

$$\begin{aligned}
    \boxed{
        \frac{\delta|\va{a}|}{|\va{a}|}
        = u_{aa}
    }
\end{aligned}$$

To find the angle change $$\delta\theta$$
between two vectors $$\va{a}$$ and $$\va{b}$$,
we start with the product rule:

$$\begin{aligned}
    \delta(\va{a} \cdot \va{b})
    = \delta(\big|\va{a}\big| \big|\va{b}\big| \cos\theta)
    = \delta\big|\va{a}\big| \big|\va{b}\big| \cos\theta
    + \big|\va{a}\big| \delta\big|\va{b}\big| \cos\theta
    - \big|\va{a}\big| \big|\va{b}\big| \sin\theta \: \delta\theta
\end{aligned}$$

We isolate this for $$\delta\theta$$, using the fact that
$$\delta(\va{a} \cdot \va{b}) = 2 \big|\va{a}\big| \big|\va{b}\big| u_{ab}$$
thanks to the projection $$u_{ab}$$:

$$\begin{aligned}
    \delta\theta
    = \frac{\delta\big|\va{a}\big| \big|\va{b}\big| \cos\theta
    + \big|\va{a}\big| \delta\big|\va{b}\big| \cos\theta
    - 2 \big|\va{a}\big| \big|\va{b}\big| u_{ab}}
    {\big|\va{a}\big| \big|\va{b}\big| \sin\theta}
\end{aligned}$$

By recognizing the length change $$\delta|\va{a}|/|\va{a}| = u_{aa}$$,
we arrive at the following expression:

$$\begin{aligned}
    \boxed{
        \delta\theta
        = \frac{(u_{aa} + u_{bb}) \cos\theta - u_{ab}}{\sin\theta}
    }
\end{aligned}$$

Now, everything so far has been about tiny vectors,
so the change of the line element $$\dd{\va{l}}$$
is easy to express using the displacement field $$\va{u}$$:

$$\begin{aligned}
    \boxed{
        \delta(\dd{\va{l}})
        = (\dd{\va{l}} \cdot \nabla) \va{u}
    }
\end{aligned}$$

Next, we calculate the change of the differential volume element $$\dd{V}$$
by treating it as the volume of a tiny parallelepiped
spanned by $$\va{a}$$, $$\va{b}$$ and $$\va{c}$$:

$$\begin{aligned}
    \delta(\dd{V})
    = \delta(\va{a} \cross \va{b} \cdot \va{c})
    &= \delta\va{a} \cross \va{b} \cdot \va{c} + \va{a} \cross \delta\va{b} \cdot \va{c} + \va{a} \cross \va{b} \cdot \delta\va{c}
    \\
    &= (\va{a} \cdot \nabla) \va{u} \cross \va{b} \cdot \va{c}
    + \va{a} \cross (\va{b} \cdot \nabla )\va{u} \cdot \va{c}
    + \va{a} \cross \va{b} \cdot (\va{c} \cdot \nabla) \va{u}
\end{aligned}$$

We can reorder the factors like so
(write it out in index notation if you are not convinced):

$$\begin{aligned}
    \delta(\dd{V})
    &= (\va{a} \cdot \nabla) \va{u} \cross \va{b} \cdot \va{c}
    + (\va{b} \cdot \nabla) \va{a} \cross \va{u} \cdot \va{c}
    + (\va{c} \cdot \nabla) \va{a} \cross \va{b} \cdot \va{u}
\end{aligned}$$

By applying a couple of vector identities,
we can rewrite this more compactly as follows:

$$\begin{aligned}
    \delta(\dd{V})
    &= \Big( \va{b} \cross \va{c} (\va{a} \cdot \nabla) \cross \va{b}
    + \va{c} \cross \va{a} (\va{b} \cdot \nabla)
    + \va{a} \cross \va{b} (\va{c} \cdot \nabla) \Big) \cdot \va{u}
    \\
    &= (\va{a} \cross \va{b} \cdot \va{c}) (\nabla \cdot \va{u})
\end{aligned}$$

Here, we recognize the definition of $$\dd{V}$$,
leading to the following infinitesimal volume change:

$$\begin{aligned}
    \boxed{
        \delta(\dd{V})
        = \nabla \cdot \va{u} \dd{V}
    }
\end{aligned}$$

Finally, for the surface element $$\dd{\va{S}} = \va{a} \cross \va{b}$$,
we use that the volume element $$\dd{V} = \va{c} \cdot \dd{\va{S}}$$:

$$\begin{aligned}
    \delta(\dd{V})
    = \delta(\va{c} \cdot \dd{\va{S}})
    = \delta\va{c} \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}})
    = (\va{c} \cdot \nabla) \va{u} \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}})
\end{aligned}$$

By comparing this to the previous result for $$\delta(\dd{V})$$,
we arrive at the following equation:

$$\begin{aligned}
    \nabla \cdot \va{u} (\va{c} \cdot \dd{\va{S}})
    = (\va{c} \cdot \nabla) \va{u} \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}})
\end{aligned}$$

Since $$\va{c}$$ is dot-multiplied at the front of each term,
we remove it, and isolate the rest for $$\delta(\dd{\va{S}})$$:

$$\begin{aligned}
    \boxed{
        \delta(\dd{\va{S}})
        = \big( (\nabla \cdot \va{u}) \hat{1} - \nabla \va{u} \big) \cdot \dd{\va{S}}
    }
\end{aligned}$$



## References
1.  B. Lautrup,
    *Physics of continuous matter: exotic and everyday phenomena in the macroscopic world*, 2nd edition,
    CRC Press.