1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
---
title: "CHSH inequality"
sort_title: "CHSH inequality"
date: 2023-02-05
categories:
- Physics
- Quantum mechanics
- Quantum information
layout: "concept"
---
The **Clauser-Horne-Shimony-Holt (CHSH) inequality**
is an alternative proof of [Bell's theorem](/know/concept/bells-theorem/),
which takes a slightly different approach
and is more useful in practice.
Suppose there is a local hidden variable (LHV) $$\lambda$$
with an unknown probability density $$\rho$$:
$$\begin{aligned}
\int \rho(\lambda) \dd{\lambda} = 1
\qquad \quad
\rho(\lambda) \ge 0
\end{aligned}$$
Given two spin-1/2 particles $$A$$ and $$B$$,
measuring their spins along arbitrary directions $$\vec{a}$$ and $$\vec{b}$$
would give each an eigenvalue $$\pm 1$$. We write this as:
$$\begin{aligned}
A(\vec{a}, \lambda) = \pm 1
\qquad \quad
B(\vec{b}, \lambda) = \pm 1
\end{aligned}$$
If $$A$$ and $$B$$ start in an entangled [Bell state](/know/concept/bell-state/),
e.g. $$\ket{\Psi^{-}}$$, then we expect a correlation between their measurements results.
The product of the outcomes of $$A$$ and $$B$$ is:
$$\begin{aligned}
\Expval{A_a B_b}
\equiv \int \rho(\lambda) \: A(\vec{a}, \lambda) \: B(\vec{b}, \lambda) \dd{\lambda}
\end{aligned}$$
So far, we have taken the same path as for proving Bell's inequality,
but for the CHSH inequality we must now diverge.
## Deriving the inequality
Consider four spin directions, two for $$A$$ called $$\vec{a}_1$$ and $$\vec{a}_2$$,
and two for $$B$$ called $$\vec{b}_1$$ and $$\vec{b}_2$$.
Let us introduce the following abbreviations:
$$\begin{aligned}
A_1 \equiv A(\vec{a}_1, \lambda)
\qquad \quad
A_2 \equiv A(\vec{a}_2, \lambda)
\qquad \quad
B_1 \equiv B(\vec{b}_1, \lambda)
\qquad \quad
B_2 \equiv B(\vec{b}_2, \lambda)
\end{aligned}$$
From the definition of the expectation value,
we know that the difference is given by:
$$\begin{aligned}
\Expval{A_1 B_1} - \Expval{A_1 B_2}
= \int \rho(\lambda) \Big( A_1 B_1 - A_1 B_2 \Big) \dd{\lambda}
\end{aligned}$$
We introduce some new terms and rearrange the resulting expression:
$$\begin{aligned}
\Expval{A_1 B_1} - \Expval{A_1 B_2}
&= \int \rho(\lambda) \Big( A_1 B_1 - A_1 B_2 \pm A_1 B_1 A_2 B_2 \mp A_1 B_1 A_2 B_2 \Big) \dd{\lambda}
\\
&= \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
- \!\int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda}
\end{aligned}$$
Taking the absolute value of both sides
and invoking the triangle inequality then yields:
$$\begin{aligned}
\Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
&= \bigg|\! \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
- \!\int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda} \!\bigg|
\\
&\le \bigg|\! \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda} \!\bigg|
+ \bigg|\! \int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda} \!\bigg|
\end{aligned}$$
Using the fact that the product of the spin eigenvalues of $$A$$ and $$B$$
is always either $$-1$$ or $$+1$$ for all directions,
we can reduce this to:
$$\begin{aligned}
\Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
&\le \int \rho(\lambda) \Big| A_1 B_1 \Big| \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
+ \!\int \rho(\lambda) \Big| A_1 B_2 \Big| \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda}
\\
&\le \int \rho(\lambda) \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
+ \!\int \rho(\lambda) \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda}
\end{aligned}$$
Evaluating these integrals gives us the following inequality,
which holds for both choices of $$\pm$$:
$$\begin{aligned}
\Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
&\le 2 \pm \Expval{A_2 B_2} \pm \Expval{A_2 B_1}
\end{aligned}$$
We should choose the signs such that the right-hand side is as small as possible, that is:
$$\begin{aligned}
\Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
&\le 2 \pm \Big( \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big)
\\
&\le 2 - \Big| \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big|
\end{aligned}$$
Rearranging this and once again using the triangle inequality,
we get the CHSH inequality:
$$\begin{aligned}
2
&\ge \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big| + \Big| \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big|
\\
&\ge \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} + \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big|
\end{aligned}$$
The quantity on the right-hand side is sometimes called the **CHSH quantity** $$S$$,
and measures the correlation between the spins of $$A$$ and $$B$$:
$$\begin{aligned}
\boxed{
S \equiv \Expval{A_2 B_1} + \Expval{A_2 B_2} + \Expval{A_1 B_1} - \Expval{A_1 B_2}
}
\end{aligned}$$
The CHSH inequality places an upper bound on the magnitude of $$S$$
for LHV-based theories:
$$\begin{aligned}
\boxed{
|S| \le 2
}
\end{aligned}$$
## Tsirelson's bound
Quantum physics can violate the CHSH inequality, but by how much?
Consider the following two-particle operator,
whose expectation value is the CHSH quantity, i.e. $$S = \expval{\hat{S}}$$:
$$\begin{aligned}
\hat{S}
= \hat{A}_2 \otimes \hat{B}_1 + \hat{A}_2 \otimes \hat{B}_2 + \hat{A}_1 \otimes \hat{B}_1 - \hat{A}_1 \otimes \hat{B}_2
\end{aligned}$$
Where $$\otimes$$ is the tensor product,
and e.g. $$\hat{A}_1$$ is the Pauli matrix for the $$\vec{a}_1$$-direction.
The square of this operator is then given by:
$$\begin{aligned}
\hat{S}^2
= \quad &\hat{A}_2^2 \otimes \hat{B}_1^2 + \hat{A}_2^2 \otimes \hat{B}_1 \hat{B}_2
+ \hat{A}_2 \hat{A}_1 \otimes \hat{B}_1^2 - \hat{A}_2 \hat{A}_1 \otimes \hat{B}_1 \hat{B}_2
\\
+ &\hat{A}_2^2 \otimes \hat{B}_2 \hat{B}_1 + \hat{A}_2^2 \otimes \hat{B}_2^2
+ \hat{A}_2 \hat{A}_1 \otimes \hat{B}_2 \hat{B}_1 - \hat{A}_2 \hat{A}_1 \otimes \hat{B}_2^2
\\
+ &\hat{A}_1 \hat{A}_2 \otimes \hat{B}_1^2 + \hat{A}_1 \hat{A}_2 \otimes \hat{B}_1 \hat{B}_2
+ \hat{A}_1^2 \otimes \hat{B}_1^2 - \hat{A}_1^2 \otimes \hat{B}_1 \hat{B}_2
\\
- &\hat{A}_1 \hat{A}_2 \otimes \hat{B}_2 \hat{B}_1 - \hat{A}_1 \hat{A}_2 \otimes \hat{B}_2^2
- \hat{A}_1^2 \otimes \hat{B}_2 \hat{B}_1 + \hat{A}_1^2 \otimes \hat{B}_2^2
\\
= \quad &\hat{A}_2^2 \otimes \hat{B}_1^2 + \hat{A}_2^2 \otimes \hat{B}_2^2 + \hat{A}_1^2 \otimes \hat{B}_1^2 + \hat{A}_1^2 \otimes \hat{B}_2^2
\\
+ &\hat{A}_2^2 \otimes \acomm{\hat{B}_1}{\hat{B}_2} - \hat{A}_1^2 \otimes \acomm{\hat{B}_1}{\hat{B}_2}
+ \acomm{\hat{A}_1}{\hat{A}_2} \otimes \hat{B}_1^2 - \acomm{\hat{A}_1}{\hat{A}_2} \otimes \hat{B}_2^2
\\
+ &\hat{A}_1 \hat{A}_2 \otimes \comm{\hat{B}_1}{\hat{B}_2} - \hat{A}_2 \hat{A}_1 \otimes \comm{\hat{B}_1}{\hat{B}_2}
\end{aligned}$$
Spin operators are unitary, so their square is the identity,
e.g. $$\hat{A}_1^2 = \hat{I}$$. Therefore $$\hat{S}^2$$ reduces to:
$$\begin{aligned}
\hat{S}^2
&= 4 \: (\hat{I} \otimes \hat{I}) + \comm{\hat{A}_1}{\hat{A}_2} \otimes \comm{\hat{B}_1}{\hat{B}_2}
\end{aligned}$$
The *norm* $$\norm{\hat{S}^2}$$ of this operator
is the largest possible expectation value $$\expval{\hat{S}^2}$$,
which is the same as its largest eigenvalue.
It is given by:
$$\begin{aligned}
\Norm{\hat{S}^2}
&= 4 + \Norm{\comm{\hat{A}_1}{\hat{A}_2} \otimes \comm{\hat{B}_1}{\hat{B}_2}}
\\
&\le 4 + \Norm{\comm{\hat{A}_1}{\hat{A}_2}} \Norm{\comm{\hat{B}_1}{\hat{B}_2}}
\end{aligned}$$
We find a bound for the norm of the commutators by using the triangle inequality, such that:
$$\begin{aligned}
\Norm{\comm{\hat{A}_1}{\hat{A}_2}}
= \Norm{\hat{A}_1 \hat{A}_2 - \hat{A}_2 \hat{A}_1}
\le \Norm{\hat{A}_1 \hat{A}_2} + \Norm{\hat{A}_2 \hat{A}_1}
\le 2 \Norm{\hat{A}_1 \hat{A}_2}
\le 2
\end{aligned}$$
And $$\norm{\comm{\hat{B}_1}{\hat{B}_2}} \le 2$$ for the same reason.
The norm is the largest eigenvalue, therefore:
$$\begin{aligned}
\Norm{\hat{S}^2}
\le 4 + 2 \cdot 2
= 8
\quad \implies \quad
\Norm{\hat{S}}
\le \sqrt{8}
= 2 \sqrt{2}
\end{aligned}$$
We thus arrive at **Tsirelson's bound**,
which states that quantum mechanics can violate
the CHSH inequality by a factor of $$\sqrt{2}$$:
$$\begin{aligned}
\boxed{
|S|
\le 2 \sqrt{2}
}
\end{aligned}$$
Importantly, this is a *tight* bound,
meaning that there exist certain spin measurement directions
for which Tsirelson's bound becomes an equality, for example:
$$\begin{aligned}
\hat{A}_1 = \hat{\sigma}_z
\qquad
\hat{A}_2 = \hat{\sigma}_x
\qquad
\hat{B}_1 = \frac{\hat{\sigma}_z + \hat{\sigma}_x}{\sqrt{2}}
\qquad
\hat{B}_2 = \frac{\hat{\sigma}_z - \hat{\sigma}_x}{\sqrt{2}}
\end{aligned}$$
Fundamental quantum mechanics says that
$$\Expval{A_a B_b} = - \vec{a} \cdot \vec{b}$$,
so $$S = 2 \sqrt{2}$$ in this case.
## References
1. D.J. Griffiths, D.F. Schroeter,
*Introduction to quantum mechanics*, 3rd edition,
Cambridge.
2. J.B. Brask,
*Quantum information: lecture notes*,
2021, unpublished.
|