1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
---
title: "Coupled mode theory"
sort_title: "Coupled mode theory"
date: 2022-03-31
categories:
- Physics
- Optics
layout: "concept"
---
Given an optical resonator (e.g. a photonic crystal cavity),
consider one of its quasinormal modes
with frequency $$\omega_0$$ and decay rate $$1 / \tau_0$$.
Its complex amplitude $$A$$ is governed by:
$$\begin{aligned}
\dv{A}{t}
&= \bigg( \!-\! i \omega_0 - \frac{1}{\tau_0} \bigg) A
\end{aligned}$$
We choose to normalize $$A$$ so that $$|A(t)|^2$$
is the total energy inside the resonator at time $$t$$.
Suppose that $$N$$ waveguides are now "connected" to this resonator,
meaning that the resonator mode $$A$$ and the outgoing waveguide mode $$S_\ell^\mathrm{out}$$
overlap sufficiently for $$A$$ to leak into $$S_\ell^\mathrm{out}$$ at a rate $$1 / \tau_\ell$$.
Conversely, the incoming mode $$S_\ell^\mathrm{in}$$ brings energy to $$A$$.
Therefore, we can write up the following general set of equations:
$$\begin{aligned}
\dv{A}{t}
&= \bigg( \!-\! i \omega_0 - \frac{1}{\tau_0} \bigg) A
- \sum_{\ell = 1}^N \frac{1}{\tau_\ell} A + \sum_{\ell = 1}^N \alpha_\ell S_\ell^\mathrm{in}
\\
S_\ell^\mathrm{out}
&= \beta_\ell S_\ell^\mathrm{in} + \gamma_\ell A
\end{aligned}$$
Where $$\alpha_\ell$$ and $$\gamma_\ell$$ are unknown coupling constants,
and $$\beta_\ell$$ represents reflection.
We normalize $$S_\ell^\mathrm{in}$$
so that $$|S_\ell^\mathrm{in}(t)|^2$$ is the power flowing towards $$A$$ at time $$t$$,
and likewise for $$S_\ell^\mathrm{out}$$.
Note that we have made a subtle approximation here:
by adding new damping mechanisms,
we are in fact modifying $$\omega_0$$;
see the [harmonic oscillator](/know/concept/harmonic-oscillator/) for a demonstration.
However, the frequency shift is second-order in the decay rate,
so by assuming that all $$\tau_\ell$$ are large,
we only need to keep the first-order terms, as we did.
This is called **weak coupling**.
If we also assume that $$\tau_0$$ is large
(its effect is already included in $$\omega_0$$),
then we can treat the decay mechanisms separately:
to analyze the decay into a certain waveguide $$\ell$$,
it is first-order accurate to neglect all other waveguides and $$\tau_0$$:
$$\begin{aligned}
\dv{A}{t}
\approx \bigg( \!-\! i \omega_0 - \frac{1}{\tau_\ell} \bigg) A + \sum_{\ell' = 1}^N \alpha_\ell S_{\ell'}^\mathrm{in}
\end{aligned}$$
To determine $$\gamma_\ell$$, we use energy conservation.
If all $$S_{\ell'}^\mathrm{in} = 0$$,
then the energy in $$A$$ decays as:
$$\begin{aligned}
\dv{|A|^2}{t}
&= \dv{A}{t} A^* + A \dv{A^*}{t}
\\
&= \bigg( \!-\! i \omega_0 - \frac{1}{\tau_\ell} \bigg) |A|^2
+ \bigg( i \omega_0 - \frac{1}{\tau_\ell} \bigg) |A|^2
\\
&= - \frac{2}{\tau_\ell} |A|^2
\end{aligned}$$
Since all other mechanisms are neglected,
all this energy must go into $$S_\ell^\mathrm{out}$$, meaning:
$$\begin{aligned}
|S_\ell^\mathrm{out}|^2
= - \dv{|A|^2}{t}
= \frac{2}{\tau_\ell} |A|^2
\end{aligned}$$
Taking the square root, we clearly see that $$|\gamma_\ell| = \sqrt{2 / \tau_\ell}$$.
Because the phase of $$S_\ell^\mathrm{out}$$ is arbitrarily defined,
$$\gamma_\ell$$ need not be complex, so we choose $$\gamma_\ell = \sqrt{2 / \tau_\ell}$$.
Next, to find $$\alpha_\ell$$, we exploit the time-reversal symmetry
of [Maxwell's equations](/know/concept/maxwells-equations/),
which govern the light in the resonator and the waveguides.
In the above calculation of $$\gamma_\ell$$, $$A$$ evolved as follows,
with the lost energy ending up in $$S_\ell^\mathrm{out}$$:
$$\begin{aligned}
A(t)
= A e^{-i \omega_0 t - t / \tau_\ell}
\end{aligned}$$
After reversing time, $$A$$ evolves like so,
where we have taken the complex conjugate
to preserve the meanings of the symbols
$$A$$, $$S_\ell^\mathrm{out}$$, and $$S_\ell^\mathrm{in}$$:
$$\begin{aligned}
A(t)
= A e^{-i \omega_0 t + t / \tau_\ell}
\end{aligned}$$
We insert this expression for $$A(t)$$ into its original differential equation, yielding:
$$\begin{aligned}
\dv{A}{t}
= \bigg( \!-\! i \omega_0 + \frac{1}{\tau_\ell} \bigg) A
= \bigg( \!-\! i \omega_0 - \frac{1}{\tau_\ell} \bigg) A + \alpha_\ell S_\ell^\mathrm{in}
\end{aligned}$$
Isolating this for $$A$$ leads us to the following power balance equation:
$$\begin{aligned}
A
= \frac{\alpha_\ell \tau_\ell}{2} S_\ell^\mathrm{in}
\qquad \implies \qquad
|\alpha_\ell|^2 |S_\ell^\mathrm{in}|^2
= \frac{4}{\tau_\ell^2} |A|^2
\end{aligned}$$
But thanks to energy conservation,
all power delivered by $$S_\ell^\mathrm{in}$$ ends up in $$A$$, so we know:
$$\begin{aligned}
|S_\ell^\mathrm{in}|^2
= \dv{|A|^2}{t}
= \frac{2}{\tau_\ell} |A|^2
\end{aligned}$$
To reconcile the two equations above,
we need $$|\alpha_\ell| = \sqrt{2 / \tau_\ell}$$.
Discarding the phase thanks to our choice of $$\gamma_\ell$$,
we conclude that $$\alpha_\ell = \sqrt{2 / \tau_\ell} = \gamma_\ell$$.
Finally, $$\beta_\ell$$ can also be determined using energy conservation.
Again using our weak coupling assumption,
if energy is only entering and leaving $$A$$ through waveguide $$\ell$$, we have:
$$\begin{aligned}
|S_\ell^\mathrm{in}|^2 - |S_\ell^\mathrm{out}|^2
= \dv{|A|^2}{t}
\end{aligned}$$
Meanwhile, using the differential equation for $$A$$,
we find the following relation:
$$\begin{aligned}
\dv{|A|^2}{t}
&= \dv{A}{t} A^* + A \dv{A^*}{t}
\\
&= - \frac{2}{\tau_\ell} |A|^2 + \alpha_\ell \Big( S_\ell^\mathrm{in} A^* + (S_\ell^\mathrm{in})^* A \Big)
\end{aligned}$$
By isolating both of the above relations for $$\idv{|A|^2}{t}$$
and equating them, we arrive at:
$$\begin{aligned}
|S_\ell^\mathrm{in}|^2 - |S_\ell^\mathrm{out}|^2
&= - \frac{2}{\tau_\ell} |A|^2 + \alpha_\ell \Big( S_\ell^\mathrm{in} A^* + (S_\ell^\mathrm{in})^* A \Big)
\end{aligned}$$
We insert the definition of $$\gamma_\ell$$ and $$\beta_\ell$$,
namely $$\gamma_\ell A = S_\ell^\mathrm{out} - \beta_\ell S_\ell^\mathrm{in}$$,
and use $$\alpha_\ell = \gamma_\ell$$:
$$\begin{aligned}
|S_\ell^\mathrm{in}|^2 - |S_\ell^\mathrm{out}|^2
&= - \Big( S_\ell^\mathrm{out} - \beta_\ell S_\ell^\mathrm{in} \Big) \Big( (S_\ell^\mathrm{out})^* - \beta_\ell^* (S_\ell^\mathrm{in})^* \Big)
\\
&\quad\; + S_\ell^\mathrm{in} \Big( (S_\ell^\mathrm{out})^* - \beta_\ell^* (S_\ell^\mathrm{in})^* \Big)
+ (S_\ell^\mathrm{in})^* \Big( S_\ell^\mathrm{out} - \beta_\ell S_\ell^\mathrm{in} \Big)
\\
&= - |\beta_\ell|^2 |S_\ell^\mathrm{in}|^2 - |S_\ell^\mathrm{out}|^2
+ \beta_\ell S_\ell^\mathrm{in} (S_\ell^\mathrm{out})^* + \beta_\ell^* (S_\ell^\mathrm{in})^* S_\ell^\mathrm{out}
\\
&\quad\; + S_\ell^\mathrm{in} (S_\ell^\mathrm{out})^* - \beta_\ell^* |S_\ell^\mathrm{in}|^2
+ (S_\ell^\mathrm{in})^* S_\ell^\mathrm{out} - \beta_\ell |S_\ell^\mathrm{in}|^2
\\
&= - (|\beta_\ell|^2 + \beta_\ell + \beta_\ell^*) |S_\ell^\mathrm{in}|^2 - |S_\ell^\mathrm{out}|^2
\\
&\quad\; + (1 - \beta_\ell) S_\ell^\mathrm{in} (S_\ell^\mathrm{out})^* + (1 - \beta_\ell^*) (S_\ell^\mathrm{in})^* S_\ell^\mathrm{out}
\end{aligned}$$
This equation is only satisfied if $$\beta_\ell = -1$$.
Combined with $$\alpha_\ell = \gamma_\ell = \sqrt{2 / \tau_\ell}$$,
the **coupled-mode equations** take the following form:
$$\begin{aligned}
\boxed{
\begin{aligned}
\dv{A}{t}
&= \bigg( \!-\! i \omega_0 - \frac{1}{\tau_0} \bigg) A
- \sum_{\ell = 1}^N \frac{1}{\tau_\ell} A
+ \sum_{\ell = 1}^N \sqrt{\frac{2}{\tau_\ell}} S_\ell^\mathrm{in}
\\
S_\ell^\mathrm{out}
&= - S_\ell^\mathrm{in} + \sqrt{\frac{2}{\tau_\ell}} A
\end{aligned}
}
\end{aligned}$$
By connecting multiple resonators with waveguides,
optical networks can be created,
whose dynamics are described by these equations.
The coupled-mode equations are extremely general,
since we have only used weak coupling,
conservation of energy, and time-reversal symmetry.
Even if the decay rates are quite large,
coupled mode theory still tends to give qualitatively correct answers.
## References
1. H.A. Haus,
*Waves and fields in optoelectronics*,
1984, Prentice-Hall.
2. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade,
*Photonic crystals: molding the flow of light*,
2nd edition, Princeton.
|