summaryrefslogtreecommitdiff
path: root/source/know/concept/dielectric-function/index.md
blob: d55cc91b343233ba37ea2568bb6d73426cc9f042 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
title: "Dielectric function"
sort_title: "Dielectric function"
date: 2022-01-24
categories:
- Physics
- Electromagnetism
- Quantum mechanics
layout: "concept"
---

The **dielectric function** or **relative permittivity** $$\varepsilon_r$$
is a measure of how strongly a given medium counteracts
[electric fields](/know/concept/electric-field/) compared to a vacuum.
Let $$\vb{D}$$ be the applied external field,
and $$\vb{E}$$ the effective field inside the material,
then $$\varepsilon_r$$ is defined such that:

$$\begin{aligned}
    \boxed{
        \vb{D} = \varepsilon_0 \varepsilon_r \vb{E}
    }
\end{aligned}$$

If $$\varepsilon_r$$ is large, then $$\vb{D}$$ is strongly suppressed,
because the material's electrons and nuclei move to create an opposing field.
In order for $$\varepsilon_r$$ to be well-defined, we only consider *linear* media,
where the induced polarization $$\vb{P}$$ is proportional to $$\vb{E}$$.

We would like to find an alternative definition of $$\varepsilon_r$$.
Consider that the usual electric fields $$\vb{E}$$, $$\vb{D}$$, and $$\vb{P}$$
can each be written as the gradient of an electrostatic potential like so,
where $$\Phi_\mathrm{tot}$$, $$\Phi_\mathrm{ext}$$ and $$\Phi_\mathrm{ind}$$
are the total, external and induced potentials, respectively:

$$\begin{aligned}
    \vb{E}
    = -\nabla \Phi_\mathrm{tot}
    \qquad \qquad
    \vb{D}
    = - \varepsilon_0 \nabla \Phi_\mathrm{ext}
    \qquad \qquad
    \vb{P}
    = \varepsilon_0 \nabla \Phi_\mathrm{ind}
\end{aligned}$$

Such that $$\Phi_\mathrm{tot} = \Phi_\mathrm{ext} + \Phi_\mathrm{ind}$$.
Inserting this into $$\vb{D} = \varepsilon_0 \varepsilon_r \vb{E}$$
then suggests defining:

$$\begin{aligned}
    \boxed{
        \varepsilon_r
        \equiv \frac{\Phi_\mathrm{ext}}{\Phi_\mathrm{tot}}
    }
\end{aligned}$$

In practice, a common way to calculate $$\varepsilon_r$$ is from
the induced charge density $$\rho_\mathrm{ind}$$,
i.e. the offset caused by the material's particles responding to the field.
Starting from [Gauss' law](/know/concept/maxwells-equations/) for $$\vb{P}$$:

$$\begin{aligned}
    \nabla \cdot \vb{P}
    = \varepsilon_0 \nabla^2 \Phi_\mathrm{ind}(\vb{r})
    = - \rho_\mathrm{ind}(\vb{r})
\end{aligned}$$

This is Poisson's equation, which has a well-known solution
via [Fourier transformation](/know/concept/fourier-transform/):

$$\begin{aligned}
    \Phi_\mathrm{ind}(\vb{q})
    = \frac{\rho_\mathrm{ind}(\vb{q})}{\varepsilon_0 |\vb{q}|^2}
    \equiv V(\vb{q}) \: \rho_\mathrm{ind}(\vb{q})
\end{aligned}$$

Where $$V(\vb{q})$$ represents Coulomb interactions,
and $$V(0) \equiv 0$$ to ensure overall neutrality:

$$\begin{aligned}
    V(\vb{q})
    \equiv \frac{1}{\varepsilon_0 |\vb{q}|^2}
    \qquad \implies \qquad
    V(\vb{r} - \vb{r}')
    = \frac{1}{4 \pi \varepsilon_0 |\vb{r} - \vb{r}'|}
\end{aligned}$$

Note that the [convolution theorem](/know/concept/convolution-theorem/)
then gives us the solution $$\Phi_\mathrm{ind}$$ in the $$\vb{r}$$-domain:

$$\begin{aligned}
    \Phi_\mathrm{ind}(\vb{r})
    = (V * \rho_\mathrm{ind})(\vb{r})
    = \int_{-\infty}^\infty V(\vb{r} - \vb{r}') \: \rho_\mathrm{ind}(\vb{r}') \dd{\vb{r}'}
\end{aligned}$$

To proceed to calculate $$\varepsilon_r$$ from $$\rho_\mathrm{ind}$$,
one needs an expression for $$\rho_\mathrm{ind}$$
that is proportional to $$\Phi_\mathrm{tot}$$ or $$\Phi_\mathrm{ext}$$
or some linear combination thereof.
Such an expression must exist for a linear medium,
but the details depend on the physics being considered
and are thus beyond our current scope;
we will just show the general form of $$\varepsilon_r$$
once such an expression has been found.

Suppose we know that $$\rho_\mathrm{ind} = c_\mathrm{ext} \Phi_\mathrm{ext}$$
for some factor $$c_\mathrm{ext}$$, which may depend on $$\vb{q}$$.
Then, since $$\Phi_\mathrm{tot} = \Phi_\mathrm{ext} \!+\! \Phi_\mathrm{ind}$$,
we find in the $$\vb{q}$$-domain:

$$\begin{aligned}
    \Phi_\mathrm{tot}
    = (1 + c_\mathrm{ext} V) \Phi_\mathrm{ext}
    \quad \implies \quad
    \boxed{
        \varepsilon_r(\vb{q})
        = \frac{1}{1 + c_\mathrm{ext}(\vb{q}) V(\vb{q})}
    }
\end{aligned}$$

Likewise, suppose we can instead show that
$$\rho_\mathrm{ind} = c_\mathrm{tot} \Phi_\mathrm{tot}$$
for some quantity $$c_\mathrm{tot}$$, then:

$$\begin{aligned}
    \Phi_\mathrm{ext}
    = (1 - c_\mathrm{tot} V) \Phi_\mathrm{tot}
    \quad \implies \quad
    \boxed{
        \varepsilon_r(\vb{q})
        = 1 - c_\mathrm{tot}(\vb{q}) V(\vb{q})
    }
\end{aligned}$$

And in the unlikely event that an expression of the form
$$\rho_\mathrm{ind} = c_\mathrm{ext} \Phi_\mathrm{ext} \!+\! c_\mathrm{tot} \Phi_\mathrm{tot}$$ is found:

$$\begin{aligned}
    (1 - c_\mathrm{tot} V) \Phi_\mathrm{tot}
    = (1 + c_\mathrm{ext} V) \Phi_\mathrm{ext}
    \quad \implies \quad
    \varepsilon_r(\vb{q})
    = \frac{1 - c_\mathrm{tot}(\vb{q}) V(\vb{q})}{1 + c_\mathrm{ext}(\vb{q}) V(\vb{q})}
\end{aligned}$$



## References
1.  H. Bruus, K. Flensberg,
    *Many-body quantum theory in condensed matter physics*,
    2016, Oxford.
2.  M. Fox,
    *Optical properties of solids*, 2nd edition,
    Oxford.