summaryrefslogtreecommitdiff
path: root/source/know/concept/dirac-notation/index.md
blob: 2830a33b663d24edbde7f4bd0434b3b459764978 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
title: "Dirac notation"
sort_title: "Dirac notation"
date: 2021-02-22
categories:
- Quantum mechanics
- Physics
layout: "concept"
---

**Dirac notation** enables us to do calculations
in a general [Hilbert space](/know/concept/hilbert-space/)
without needing to worry about the space's representation.
It is the *lingua franca* of quantum mechanics.

In Dirac notation there are
**kets** $$\ket{V}$$ from the Hilbert space $$\mathbb{H}$$
and **bras** $$\bra{V}$$ from its dual space $$\mathbb{H}'$$.
Crucially, the bras and kets are from different Hilbert spaces
and therefore cannot be added,
but every bra has a corresponding ket and vice versa.

Bras and kets can be combined in two ways: the **inner product**
$$\inprod{V}{W}$$, which returns a scalar, and the **outer product**
$$\ket{V} \bra{W}$$, which returns a linear operator
that maps kets $$\ket{V}$$ to other kets $$\ket{V'}$$.
Recall that by definition the Hilbert inner product must satisfy:

$$\begin{aligned}
    \inprod{V}{W} = \inprod{W}{V}^*
\end{aligned}$$

So far, nothing has been said about the actual representation of bras or kets.
If we represent kets as $$N$$-dimensional columns vectors,
the corresponding bras are given by the kets' adjoints,
i.e. their transpose conjugates:

$$\begin{aligned}
    \ket{V} =
    \begin{bmatrix}
        v_1 \\ \vdots \\ v_N
    \end{bmatrix}
    \quad \implies \quad
    \bra{V} =
    \begin{bmatrix}
        v_1^* & \cdots & v_N^*
    \end{bmatrix}
\end{aligned}$$

The inner product $$\inprod{V}{W}$$ is then just the familiar dot product $$V \cdot W$$:

$$\begin{gathered}
    \inprod{V}{W}
    =
    \begin{bmatrix}
        v_1^* & \cdots & v_N^*
    \end{bmatrix}
    \cdot
    \begin{bmatrix}
        w_1 \\ \vdots \\ w_N
    \end{bmatrix}
    = v_1^* w_1 + ... + v_N^* w_N
\end{gathered}$$

Meanwhile, the outer product $$\ket{V} \bra{W}$$ creates an $$N \cross N$$ matrix,
which can be thought of as applying an operation to any vector it multiplies:

$$\begin{gathered}
    \ket{V} \bra{W}
    =
    \begin{bmatrix}
        v_1 \\ \vdots \\ v_N
    \end{bmatrix}
    \cdot
    \begin{bmatrix}
        w_1^* & \cdots & w_N^*
    \end{bmatrix}
    =
    \begin{bmatrix}
        v_1 w_1^* & \cdots & v_1 w_N^* \\
        \vdots & \ddots & \vdots \\
        v_N w_1^* & \cdots & v_N w_N^*
    \end{bmatrix}
\end{gathered}$$

If the kets are instead represented by continuous functions $$f(x)$$ of $$x \in [a, b]$$,
then the bras are *functionals* $$F[u(x)]$$
that take an arbitrary function $$u(x)$$ as an argument and return a scalar:

$$\begin{aligned}
    \ket{f} = f(x)
    \quad \implies \quad
    \bra{f}
    = F[u(x)]
    = \int_a^b f^*(x) \: u(x) \dd{x}
\end{aligned}$$

Consequently, the inner product is simply the following familiar integral:

$$\begin{gathered}
    \inprod{f}{g}
    = F[g(x)]
    = \int_a^b f^*(x) \: g(x) \dd{x}
\end{gathered}$$

However, the outer product is then rather abstract:
a continuous analogue of a matrix:

$$\begin{gathered}
    \ket{f} \bra{g}
    = f(x) \: G[u(x)]
    = f(x) \int_a^b g^*(\xi) \: u(\xi) \dd{\xi}
\end{gathered}$$

This maybe makes more sense if we surround it
by a bra $$\bra{u}$$ and a ket $$\ket{w}$$ and rearrange:

$$\begin{aligned}
    \bra{u} \!\Big(\!\ket{f} \bra{g}\!\Big)\! \ket{w}
    &= U\big[f(x) \: G[w(x)]\big]
    = U\Big[ f(x) \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big]
    \\
    &= \int_a^b u^*(x) \: f(x) \: \Big(\int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \dd{x}
    \\
    &= \Big( \int_a^b u^*(x) \: f(x) \dd{x} \Big) \Big( \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big)
    \\
    &= \inprod{u}{f} \inprod{g}{w}
\end{aligned}$$



## References
1.  R. Shankar,
    *Principles of quantum mechanics*, 2nd edition,
    Springer.