1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
---
title: "Dyson equation"
sort_title: "Dyson equation"
date: 2021-11-01
categories:
- Physics
- Quantum mechanics
layout: "concept"
---
Consider the time-dependent Schrödinger equation,
describing a wavefunction $$\Psi_0(\vb{r}, t)$$:
$$\begin{aligned}
i \hbar \pdv{}{t}\Psi_0(\vb{r}, t)
= \hat{H}_0(\vb{r}) \: \Psi_0(\vb{r}, t)
\end{aligned}$$
By definition, this equation's
[fundamental solution](/know/concept/fundamental-solution/)
$$G_0(\vb{r}, t; \vb{r}', t')$$ satisfies the following:
$$\begin{aligned}
\Big( i \hbar \pdv{}{t}- \hat{H}_0(\vb{r}) \Big) G_0(\vb{r}, t; \vb{r}', t')
= \delta(\vb{r} - \vb{r}') \: \delta(t - t')
\end{aligned}$$
From this, we define the inverse $$\hat{G}{}_0^{-1}(\vb{r}, t)$$
as follows, so that $$\hat{G}{}_0^{-1} G_0 = \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t')$$:
$$\begin{aligned}
\hat{G}{}_0^{-1}(\vb{r}, t)
&\equiv i \hbar \pdv{}{t}- \hat{H}_0(\vb{r})
\end{aligned}$$
Note that $$\hat{G}{}_0^{-1}$$ is an operator, while $$G_0$$ is a function.
For the sake of consistency, we thus define
the operator $$\hat{G}_0(\vb{r}, t)$$
as a multiplication by $$G_0$$
and integration over $$\vb{r}'$$ and $$t'$$:
$$\begin{aligned}
\hat{G}_0(\vb{r}, t) \: f
\equiv \iint_{-\infty}^\infty G_0(\vb{r}, t; \vb{r}', t') \: f(\vb{r}', t') \: \dd{\vb{r}}' \dd{t'}
\end{aligned}$$
For an arbitrary function $$f(\vb{r}, t)$$,
so that $$\hat{G}{}_0^{-1} \hat{G}_0 = \hat{G}_0 \hat{G}{}_0^{-1} = 1$$.
Moving on, the Schrödinger equation can be rewritten like so,
using $$\hat{G}{}_0^{-1}$$:
$$\begin{aligned}
\hat{G}{}_0^{-1}(\vb{r}, t) \: \Psi_0(\vb{r}, t)
= 0
\end{aligned}$$
Let us assume that $$\hat{H}_0$$ is simple,
such that $$G_0$$ and $$\hat{G}{}_0^{-1}$$ can be found without issues
by solving the defining equation above.
Suppose we now add a more complicated and
possibly time-dependent term $$\hat{H}_1(\vb{r}, t)$$,
in which case the corresponding fundamental solution
$$G(\vb{r}, \vb{r}', t, t')$$ satisfies:
$$\begin{aligned}
\delta(\vb{r} - \vb{r}') \: \delta(t - t')
&= \Big( i \hbar \pdv{}{t}- \hat{H}_0(\vb{r}) - \hat{H}_1(\vb{r}, t) \Big) G(\vb{r}, t; \vb{r}', t')
\\
&= \Big( \hat{G}{}_0^{-1}(\vb{r}, t) - \hat{H}_1(\vb{r}, t) \Big) G(\vb{r}, t; \vb{r}', t')
\end{aligned}$$
This equation is typically too complicated to solve,
so we would like an easier way to calculate this new $$G$$.
The perturbed wavefunction $$\Psi(\vb{r}, t)$$
satisfies the Schrödinger equation:
$$\begin{aligned}
\Big( \hat{G}{}_0^{-1}(\vb{r}, t) - \hat{H}_1(\vb{r}, t) \Big) \Psi(\vb{r}, t)
= 0
\end{aligned}$$
We know that $$\hat{G}{}_0^{-1} \Psi_0 = 0$$,
which we put on the right,
and then we apply $$\hat{G}_0$$ in front:
$$\begin{aligned}
\hat{G}_0^{-1} \Psi - \hat{H}_1 \Psi
= \hat{G}_0^{-1} \Psi_0
\quad \implies \quad
\Psi - \hat{G}_0 \hat{H}_1 \Psi
&= \Psi_0
\end{aligned}$$
This equation is recursive,
so we iteratively insert it into itself.
Note that the resulting equations are the same as those from
[time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/):
$$\begin{aligned}
\Psi
&= \Psi_0 + \hat{G}_0 \hat{H}_1 \Psi
\\
&= \Psi_0 + \hat{G}_0 \hat{H}_1 \Psi_0 + \hat{G}_0 \hat{H}_1 \hat{G}_0 \hat{H}_1 \Psi
\\
&= \Psi_0 + \hat{G}_0 \hat{H}_1 \Psi_0 + \hat{G}_0 \hat{H}_1 \hat{G}_0 \hat{H}_1 \Psi_0
+ \hat{G}_0 \hat{H}_1 \hat{G}_0 \hat{H}_1 \hat{G}_0 \hat{H}_1 \Psi_0 + \: ...
\\
&= \Psi_0 + \big( \hat{G}_0 + \hat{G}_0 \hat{H}_1 \hat{G}_0 + \hat{G}_0 \hat{H}_1 \hat{G}_0 \hat{H}_1 \hat{G}_0 + \: ... \big) \hat{H}_1 \Psi_0
\end{aligned}$$
The parenthesized expression clearly has the same recursive pattern,
so we denote it by $$\hat{G}$$ and write the so-called **Dyson equation**:
$$\begin{aligned}
\boxed{
\hat{G}
= \hat{G}_0 + \hat{G}_0 \hat{H}_1 \hat{G}
}
\end{aligned}$$
Such an iterative scheme is excellent for approximating $$\hat{G}(\vb{r}, t)$$.
Once a satisfactory accuracy is obtained,
the perturbed wavefunction $$\Psi$$ can be calculated from:
$$\begin{aligned}
\boxed{
\Psi
= \Psi_0 + \hat{G} \hat{H}_1 \Psi_0
}
\end{aligned}$$
This relation is equivalent to the Schrödinger equation.
So now we have the operator $$\hat{G}(\vb{r}, t)$$,
but what about the fundamental solution function $$G(\vb{r}, t; \vb{r}', t')$$?
Let us take its definition, multiply it by an arbitrary $$f(\vb{r}, t)$$,
and integrate over $$G$$'s second argument pair:
$$\begin{aligned}
\iint \big( \hat{G}{}_0^{-1} \!-\! \hat{H}_1 \big) G(\vb{r}', t') \: f(\vb{r}', t') \dd{\vb{r}'} \dd{t'}
= \iint \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t') \: f(\vb{r}', t') \dd{\vb{r}'} \dd{t'}
= f
\end{aligned}$$
Where we have hidden the arguments $$(\vb{r}, t)$$ for brevity.
We now apply $$\hat{G}_0(\vb{r}, t)$$ to this equation
(which contains an integral over $$t''$$ independent of $$t'$$):
$$\begin{aligned}
\hat{G}_0 f
&= \big( \hat{G}_0 \hat{G}{}_0^{-1} - \hat{G}_0 \hat{H}_1 \big) \iint_{-\infty}^\infty G(\vb{r}', t') \: f(\vb{r}', t') \dd{\vb{r}'} \dd{t'}
\\
&= \big( 1 - \hat{G}_0 \hat{H}_1 \big) \iint_{-\infty}^\infty G(\vb{r}', t') \: f(\vb{r}', t') \dd{\vb{r}'} \dd{t'}
\end{aligned}$$
Here, the shape of Dyson's equation is clearly recognizable,
so we conclude that, as expected, the operator $$\hat{G}$$
is defined as multiplication by the function $$G$$ followed by integration:
$$\begin{aligned}
\hat{G}(\vb{r}, t) \: f(\vb{r}, t)
\equiv \iint_{-\infty}^\infty G(\vb{r}, t; \vb{r}', t') \: f(\vb{r}', t') \dd{\vb{r}}' \dd{t'}
\end{aligned}$$
## References
1. H. Bruus, K. Flensberg,
*Many-body quantum theory in condensed matter physics*,
2016, Oxford.
|