1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
---
title: "Equation-of-motion theory"
sort_title: "Equation-of-motion theory"
date: 2021-11-08
categories:
- Physics
- Quantum mechanics
layout: "concept"
---
In many-body quantum theory, **equation-of-motion theory**
is a method to calculate the time evolution of a system's properties
using [Green's functions](/know/concept/greens-functions/).
Starting from the definition of
the retarded single-particle Green's function $$G_{\nu \nu'}^R(t, t')$$,
we simply take the $$t$$-derivative
(we could do the same with the advanced function $$G_{\nu \nu'}^A$$):
$$\begin{aligned}
i \hbar \pdv{G^R_{\nu \nu'}(t, t')}{t}
&= \pdv{\Theta(t \!-\! t')}{t} \Expval{\comm{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
+ \Theta(t \!-\! t') \pdv{}{t}\Expval{\comm{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
\\
&= \delta(t \!-\! t') \Expval{\comm{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
+ \Theta(t \!-\! t') \Expval{\Comm{\dv{\hat{c}_\nu(t)}{t}}{\hat{c}_{\nu'}^\dagger(t)}_{\mp}}
\end{aligned}$$
Where we have used that the derivative
of a [Heaviside step function](/know/concept/heaviside-step-function/) $$\Theta$$
is a [Dirac delta function](/know/concept/dirac-delta-function/) $$\delta$$.
Also, from the [second quantization](/know/concept/second-quantization/),
$$\expval{\comm{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}$$
for $$t = t'$$ is zero when $$\nu \neq \nu'$$.
Since we are in the [Heisenberg picture](/know/concept/heisenberg-picture/),
we know the equation of motion of $$\hat{c}_\nu(t)$$:
$$\begin{aligned}
\dv{\hat{c}_\nu(t)}{t}
= \frac{i}{\hbar} \comm{\hat{H}_0(t)}{\hat{c}_\nu(t)} + \frac{i}{\hbar} \comm{\hat{H}_\mathrm{int}(t)}{\hat{c}_\nu(t)}
\end{aligned}$$
Where the single-particle part of the Hamiltonian $$\hat{H}_0$$
and the interaction part $$\hat{H}_\mathrm{int}$$
are assumed to be time-independent in the Schrödinger picture.
We thus get:
$$\begin{aligned}
i \hbar \pdv{G^R_{\nu \nu'}}{t}
&= \delta_{\nu \nu'} \delta(t \!-\! t')+ \frac{i}{\hbar} \Theta(t \!-\! t')
\Expval{\Comm{\comm{\hat{H}_0}{\hat{c}_\nu} + \comm{\hat{H}_\mathrm{int}}{\hat{c}_\nu}}{\hat{c}_{\nu'}^\dagger}_{\mp}}
\end{aligned}$$
The most general form of $$\hat{H}_0$$, for any basis,
is as follows, where $$u_{\nu' \nu''}$$ are constants:
$$\begin{aligned}
\hat{H}_0
= \sum_{\nu' \nu''} u_{\nu' \nu''} \hat{c}_{\nu'}^\dagger \hat{c}_{\nu''}
\quad \implies \quad
\comm{\hat{H}_0}{\hat{c}_\nu}
= - \sum_{\nu''} u_{\nu \nu''} \hat{c}_{\nu''}
\end{aligned}$$
{% include proof/start.html id="proof-commutator" -%}
Using the commutator identity for $$\comm{A B}{C}$$,
we decompose it like so:
$$\begin{aligned}
\comm{\hat{H}_0}{\hat{c}_\nu}
&= \sum_{\nu' \nu''} u_{\nu \nu''} \comm{\hat{c}_{\nu'}^\dagger \hat{c}_{\nu''}}{\hat{c}_\nu}
= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{c}_{\nu'}^\dagger \comm{\hat{c}_{\nu''}}{\hat{c}_\nu}
+ \comm{\hat{c}_{\nu'}^\dagger}{\hat{c}_\nu} \hat{c}_{\nu''} \Big)
\end{aligned}$$
Bosons have well-known commutation relations,
so the result follows directly:
$$\begin{aligned}
\comm{\hat{H}_0}{\hat{b}_\nu}
&= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{b}_{\nu'}^\dagger \comm{\hat{b}_{\nu''}}{\hat{b}_\nu}
+ \comm{\hat{b}_{\nu'}^\dagger}{\hat{b}_\nu} \hat{b}_{\nu''} \Big)
= - \sum_{\nu''} u_{\nu \nu''} \hat{b}_{\nu''}
\end{aligned}$$
Fermions only have anticommutation relations,
so a bit more work is necessary:
$$\begin{aligned}
\comm{\hat{H}_0}{\hat{f}_{\!\nu}}
&= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{f}_{\!\nu'}^\dagger \comm{\hat{f}_{\!\nu''}}{\hat{f}_{\!\nu}}
+ \comm{\hat{f}_{\!\nu'}^\dagger}{\hat{f}_{\!\nu}} \hat{f}_{\!\nu''} \Big)
\\
&= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{f}_{\!\nu'}^\dagger \acomm{\hat{f}_{\!\nu''}}{\hat{f}_{\!\nu}}
- 2 \hat{f}_{\!\nu'}^\dagger \hat{f}_{\!\nu} \hat{f}_{\!\nu''}
+ \acomm{\hat{f}_{\!\nu'}^\dagger}{\hat{f}_{\!\nu}} \hat{f}_{\!\nu''}
- 2 \hat{f}_{\!\nu} \hat{f}_{\!\nu'}^\dagger \hat{f}_{\!\nu''} \Big)
\\
&= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \delta_{\nu \nu'} \hat{f}_{\!\nu''}
- 2 \acomm{\hat{f}_{\!\nu'}^\dagger}{\hat{f}_{\!\nu}} \hat{f}_{\!\nu''} \Big)
= - \sum_{\nu''} u_{\nu \nu''} \hat{f}_{\!\nu''}
\end{aligned}$$
{% include proof/end.html id="proof-commutator" %}
Substituting this into $$G_{\nu \nu'}^R$$'s equation of motion,
we recognize another Green's function $$G_{\nu'' \nu'}^R$$:
$$\begin{aligned}
i \hbar \pdv{G^R_{\nu \nu'}}{t}
&= \delta_{\nu \nu'} \delta(t \!-\! t') + \frac{i}{\hbar} \Theta(t \!-\! t')
\bigg( \Expval{\comm{\comm{\hat{H}_\mathrm{int}}{\hat{c}_\nu}}{\hat{c}_{\nu'}^\dagger}_{\mp}}
- \sum_{\nu''} u_{\nu \nu''} \Expval{\comm{\hat{c}_{\nu''}}{\hat{c}_{\nu'}^\dagger}_{\mp}} \bigg)
\\
&= \delta_{\nu \nu'} \delta(t \!-\! t')
+ \frac{i}{\hbar} \Theta(t \!-\! t') \Expval{\comm{\comm{\hat{H}_\mathrm{int}}{\hat{c}_\nu}}{\hat{c}_{\nu'}^\dagger}_{\mp}}
+ \sum_{\nu''} u_{\nu \nu''} G_{\nu''\nu'}^R(t, t')
\end{aligned}$$
Rearranging this as follows yields the main result
of equation-of-motion theory:
$$\begin{aligned}
\boxed{
\sum_{\nu''} \Big( i \hbar \delta_{\nu \nu''} \pdv{}{t} - u_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(t, t')
= \delta_{\nu \nu'} \delta(t \!-\! t') + D_{\nu \nu'}^R(t, t')
}
\end{aligned}$$
Where $$D_{\nu \nu'}^R$$ represents a correction due to interactions $$\hat{H}_\mathrm{int}$$,
and also has the form of a retarded Green's function,
but with $$\hat{c}_{\nu}$$ replaced by $$\comm{-\hat{H}_\mathrm{int}}{\hat{c}_\nu}$$:
$$\begin{aligned}
\boxed{
D^R_{\nu'' \nu'}(t, t')
\equiv - \frac{i}{\hbar} \Theta(t \!-\! t') \Expval{\comm{\comm{-\hat{H}_\mathrm{int}(t)}{\hat{c}_\nu(t)}}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
}
\end{aligned}$$
Unfortunately, calculating $$D_{\nu \nu'}^R$$
might still not be doable due to $$\hat{H}_\mathrm{int}$$.
The key idea of equation-of-motion theory is to either approximate $$D_{\nu \nu'}^R$$ now,
or to differentiate it again $$i \hbar \idv{D_{\nu \nu'}^R}{t}$$,
and try again for the resulting corrections,
until a solvable equation is found.
There is no guarantee that that will ever happen;
if not, one of the corrections needs to be approximated.
For non-interacting particles $$\hat{H}_\mathrm{int} = 0$$,
so clearly $$D_{\nu \nu'}^R$$ trivially vanishes then.
Let us assume that $$\hat{H}_0$$ is also time-independent,
such that $$G_{\nu'' \nu'}^R$$ only depends on the difference $$t - t'$$:
$$\begin{aligned}
\sum_{\nu''} \Big( i \hbar \delta_{\nu \nu''} \pdv{}{t} - u_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(t - t')
= \delta_{\nu \nu'} \delta(t - t')
\end{aligned}$$
We take the [Fourier transform](/know/concept/fourier-transform/)
$$(t \!-\! t') \to (\omega + i \eta)$$, where $$\eta \to 0^+$$ ensures convergence:
$$\begin{aligned}
\sum_{\nu''} \Big( \hbar \delta_{\nu \nu''} (\omega + i \eta) - u_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(\omega)
= \delta_{\nu \nu'}
\end{aligned}$$
If we assume a diagonal basis $$u_{\nu \nu''} = \varepsilon_\nu \delta_{\nu \nu''}$$,
this reduces to the following:
$$\begin{aligned}
\delta_{\nu \nu'}
&= \sum_{\nu''} \Big( \hbar \delta_{\nu \nu''} (\omega + i \eta) - \varepsilon_\nu \delta_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(\omega)
\\
&= \Big( \hbar (\omega + i \eta) - \varepsilon_\nu \Big) G^R_{\nu \nu'}(\omega)
\end{aligned}$$
For a non-interacting, time-independent Hamiltonian,
we therefore arrive at:
$$\begin{aligned}
\boxed{
G^R_{\nu \nu'}(\omega)
= \frac{\delta_{\nu \nu'}}{\hbar (\omega + i \eta) - \varepsilon_\nu}
}
\end{aligned}$$
## References
1. H. Bruus, K. Flensberg,
*Many-body quantum theory in condensed matter physics*,
2016, Oxford.
|