1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
---
title: "Fermi-Dirac distribution"
sort_title: "Fermi-Dirac distribution"
date: 2021-07-11
categories:
- Physics
- Statistics
- Quantum mechanics
layout: "concept"
---
**Fermi-Dirac statistics** describe how identical **fermions**,
which obey the [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/),
distribute themselves across the available states in a system at equilibrium.
Consider one single-particle state $$s$$,
which can contain $$0$$ or $$1$$ fermions.
Because the occupation number $$N$$ is variable,
we turn to the [grand canonical ensemble](/know/concept/grand-canonical-ensemble/),
whose grand partition function $$\mathcal{Z}$$ is as follows,
where $$\varepsilon$$ is the energy of $$s$$
and $$\mu$$ is the chemical potential:
$$\begin{aligned}
\mathcal{Z}
= \sum_{N = 0}^1 \Big( e^{-\beta (\varepsilon - \mu)} \Big)^N
= 1 + e^{-\beta (\varepsilon - \mu)}
\end{aligned}$$
The corresponding [thermodynamic potential](/know/concept/thermodynamic-potential/)
is the Landau potential $$\Omega$$, given by:
$$\begin{aligned}
\Omega
= - k T \ln{\mathcal{Z}}
= - k T \ln\!\Big( 1 + e^{-\beta (\varepsilon - \mu)} \Big)
\end{aligned}$$
The average number of particles $$\expval{N}$$
in $$s$$ is then found by taking a derivative of $$\Omega$$:
$$\begin{aligned}
\expval{N}
= - \pdv{\Omega}{\mu}
= k T \pdv{\ln{\mathcal{Z}}}{\mu}
= \frac{e^{-\beta (\varepsilon - \mu)}}{1 + e^{-\beta (\varepsilon - \mu)}}
\end{aligned}$$
By multiplying both the numerator and the denominator by $$e^{\beta (\varepsilon \!-\! \mu)}$$,
we arrive at the standard form of
the **Fermi-Dirac distribution** or **Fermi function** $$f_F$$:
$$\begin{aligned}
\boxed{
\expval{N}
= f_F(\varepsilon)
= \frac{1}{e^{\beta (\varepsilon - \mu)} + 1}
}
\end{aligned}$$
This gives the expected occupation number $$\expval{N}$$
of state $$s$$ with energy $$\varepsilon$$,
given a temperature $$T$$ and chemical potential $$\mu$$.
{% comment %}
The corresponding variance $$\sigma^2 \equiv \expval{N^2} - \expval{N}^2$$ is found to be:
$$\begin{aligned}
\boxed{
\sigma^2
= k T \pdv{\expval{N}}{\mu}
= \expval{N} \big(1 - \expval{N}\big)
}
\end{aligned}$$
{% endcomment %}
## References
1. H. Gould, J. Tobochnik,
*Statistical and thermal physics*, 2nd edition,
Princeton.
|