1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
---
title: "Fermi-Dirac distribution"
sort_title: "Fermi-Dirac distribution"
date: 2021-07-11
categories:
- Physics
- Statistics
- Quantum mechanics
layout: "concept"
---
**Fermi-Dirac statistics** describe how identical **fermions**,
which obey the [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/),
will distribute themselves across the available states in a system at equilibrium.
Consider one single-particle state $$s$$,
which can contain $$0$$ or $$1$$ fermions.
Because the occupation number $$N$$ is variable,
we turn to the [grand canonical ensemble](/know/concept/grand-canonical-ensemble/),
whose grand partition function $$\mathcal{Z}$$ is as follows,
where we sum over all microstates of $$s$$:
$$\begin{aligned}
\mathcal{Z}
= \sum_{N = 0}^1 \exp(- \beta N (\varepsilon - \mu))
= 1 + \exp(- \beta (\varepsilon - \mu))
\end{aligned}$$
Where $$\mu$$ is the chemical potential,
and $$\varepsilon$$ is the energy contribution per particle in $$s$$,
i.e. the total energy of all particles $$E = \varepsilon N$$.
The corresponding [thermodynamic potential](/know/concept/thermodynamic-potential/)
is the Landau potential $$\Omega$$, given by:
$$\begin{aligned}
\Omega
= - k T \ln{\mathcal{Z}}
= - k T \ln\!\Big( 1 + \exp(- \beta (\varepsilon - \mu)) \Big)
\end{aligned}$$
The average number of particles $$\Expval{N}$$
in state $$s$$ is then found to be as follows:
$$\begin{aligned}
\Expval{N}
= - \pdv{\Omega}{\mu}
= k T \pdv{\ln{\mathcal{Z}}}{\mu}
= \frac{\exp(- \beta (\varepsilon - \mu))}{1 + \exp(- \beta (\varepsilon - \mu))}
\end{aligned}$$
By multiplying both the numerator and the denominator by $$\exp(\beta (\varepsilon \!-\! \mu))$$,
we arrive at the standard form of
the **Fermi-Dirac distribution** or **Fermi function** $$f_F$$:
$$\begin{aligned}
\boxed{
\Expval{N}
= f_F(\varepsilon)
= \frac{1}{\exp(\beta (\varepsilon - \mu)) + 1}
}
\end{aligned}$$
This tells the expected occupation number $$\Expval{N}$$ of state $$s$$,
given a temperature $$T$$ and chemical potential $$\mu$$.
The corresponding variance $$\sigma^2$$ of $$N$$ is found to be:
$$\begin{aligned}
\boxed{
\sigma^2
= k T \pdv{\Expval{N}}{\mu}
= \Expval{N} \big(1 - \Expval{N}\big)
}
\end{aligned}$$
## References
1. H. Gould, J. Tobochnik,
*Statistical and thermal physics*, 2nd edition,
Princeton.
|