summaryrefslogtreecommitdiff
path: root/source/know/concept/grad-shafranov-equation/index.md
blob: b86c03282bacfb5d5a2ebcd242f5f1f0fc8d00d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
title: "Grad-Shafranov equation"
sort_title: "Grad-Shafranov equation"
date: 2022-03-06
categories:
- Physics
- Plasma physics
layout: "concept"
---

Nuclear fusion reactors tend to have a torus shape,
in which the plasma is confined by a **pinch**,
i.e. by [magnetic fields](/know/concept/magnetic-field/)
chosen so that the [Lorentz force](/know/concept/lorentz-force/)
stops particles escaping.
Effectively, we are taking a cylindrical [screw pinch](/know/concept/screw-pinch/)
and bending it into a torus.

We would like to find the equilibrium state of the plasma
in the general case of a reactor with toroidal symmetry.
Using ideal [magnetohydrodynamics](/know/concept/magnetohydrodynamics/) (MHD),
we start by assuming that the fluid is stationary,
and that the confining field $$\vb{B}$$ is fixed:

$$\begin{aligned}
    \vb{u}
    = 0
    \qquad \qquad
    \pdv{\vb{u}}{t}
    = 0
    \qquad \qquad
    \pdv{\vb{B}}{t}
    = 0
    \qquad \qquad
    \vb{E}
    = 0
\end{aligned}$$

Notice that $$\vb{E} = 0$$ is a result of the ideal generalized Ohm's law.
Under these assumptions, the relevant MHD equations to be solved are
Gauss' law for magnetism, Ampère's law, and the MHD momentum equation, respectively:

$$\begin{aligned}
    0
    = \nabla \cdot \vb{B}
    \qquad \qquad
    \mu_0 \vb{J}
    = \nabla \cross \vb{B}
    \qquad \qquad
    \nabla p
    = \vb{J} \cross \vb{B}
\end{aligned}$$

The goal is to analyze them in this order,
exploiting toroidal symmetry along the way,
to arrive at a general equilibrium condition.
[Cylindrical polar coordinates](/know/concept/cylindrical-polar-coordinates/) $$(r, \theta, z)$$
are a natural choice, with the $$z$$-axis running through the middle of the torus.

As preparation, it is a good idea to write $$\vb{B}$$
as the curl of a magnetic vector potential $$\vb{A}$$,
which looks like this in cylindrical polar coordinates:

$$\begin{aligned}
    \vb{B}
    = \nabla \cross \vb{A}
    = \begin{bmatrix}
        \displaystyle \frac{1}{r} \pdv{A_z}{\theta} - \pdv{A_\theta}{z} \\
        \displaystyle \pdv{A_r}{z} - \pdv{A_z}{r} \\
        \displaystyle \frac{1}{r} \Big( \pdv{(r A_\theta)}{r} - \pdv{A_r}{\theta} \Big)
    \end{bmatrix}
    = \begin{bmatrix}
        \displaystyle - \pdv{A_\theta}{z} \\
        \displaystyle \pdv{A_r}{z} - \pdv{A_z}{r} \\
        \displaystyle \frac{1}{r} \pdv{(r A_\theta)}{r}
    \end{bmatrix}
\end{aligned}$$

Here, it is convenient to define the so-called **stream function** $$\psi$$ as follows:

$$\begin{aligned}
    \boxed{
        \psi
        \equiv r A_\theta
    }
\end{aligned}$$

Such that $$\vb{B}$$ can be written as below,
where we will regard $$B_\theta$$ as a given quantity:

$$\begin{aligned}
    \vb{B}
    = \begin{bmatrix}
        \displaystyle -\frac{1}{r} \pdv{\psi}{z} \\
        B_\theta \\
        \displaystyle \frac{1}{r} \pdv{\psi}{r}
    \end{bmatrix}
    \qquad \mathrm{where} \qquad
    B_\theta
    = \pdv{A_r}{z} - \pdv{A_z}{r}
\end{aligned}$$


Inserting this into Gauss' law,
we see that it is trivially satisfied,
thanks to circular symmetry guaranteeing that $$\ipdv{B_\theta}{\theta} = 0$$:

$$\begin{aligned}
    0
    = \nabla \cdot \vb{B}
    &= - \frac{1}{r} \pdv{}{r}\bigg( \frac{r}{r} \pdv{\psi}{z} \bigg)
    + \frac{1}{r} \pdv{B_\theta}{\theta}
    + \pdv{}{z}\bigg( \frac{1}{r} \pdv{\psi}{r} \bigg)
    \\
    &= - \frac{1}{r} \mpdv{\psi}{r}{z} + \frac{1}{r} \mpdv{\psi}{z}{r}
    = 0
\end{aligned}$$

What matters is that we have expressions for the components of $$\vb{B}$$.
Moving on, to find the current density $$\vb{J}$$,
we use Ampère's law and symmetry to get:


$$\begin{aligned}
    \vb{J}
    = \frac{1}{\mu_0} \nabla \cross \vb{B}
    = \frac{1}{\mu_0}
    \begin{bmatrix}
        \displaystyle \frac{1}{r} \pdv{B_z}{\theta} - \pdv{B_\theta}{z} \\
        \displaystyle \pdv{B_r}{z} - \pdv{B_z}{r} \\
        \displaystyle \frac{1}{r} \Big( \pdv{(r B_\theta)}{r} - \pdv{B_r}{\theta} \Big)
    \end{bmatrix}
    = \frac{1}{\mu_0}
    \begin{bmatrix}
        \displaystyle 0 \\
        \displaystyle \pdv{B_r}{z} - \pdv{B_z}{r} \\
        \displaystyle \frac{1}{r} \pdv{(r B_\theta)}{r}
    \end{bmatrix}
\end{aligned}$$

Where we have assumed that $$B_\theta$$ depends only on $$r$$, not $$z$$ or $$\theta$$.
Substituting this into the MHD momentum equation
gives the following pressure gradient $$\nabla p$$:

$$\begin{aligned}
    \nabla p
    &= \vb{J} \cross \vb{B}
    = \begin{bmatrix}
        J_\theta B_z - J_z B_\theta \\
        J_z B_r - J_r B_z \\
        J_r B_\theta - J_\theta B_r
    \end{bmatrix}
    = \begin{bmatrix}
        J_\theta B_z - J_z B_\theta \\
        J_z B_r \\
        - J_\theta B_r
    \end{bmatrix}
\end{aligned}$$

Now, the idea is to focus on this $$r$$-component to get an equation for $$\psi$$,
whose solution can then be used to calculate the $$\theta$$ and $$z$$-components of $$\nabla p$$.
Therefore, we evaluate:

$$\begin{aligned}
    \pdv{p}{r}
    &= J_\theta B_z - J_z B_\theta
    \\
    &= \frac{1}{\mu_0} \bigg( \pdv{B_r}{z} - \pdv{B_z}{r} \bigg) B_z
    - \frac{1}{\mu_0 r} \pdv{(r B_\theta)}{r} B_\theta
    \\
    &= - \frac{1}{\mu_0} \bigg( \pdv{}{z}\Big(\frac{1}{r} \pdv{\psi}{z}\Big)
    + \pdv{}{r}\Big(\frac{1}{r} \pdv{\psi}{r}\Big) \bigg) \frac{1}{r} \pdv{\psi}{r}
    - \frac{1}{\mu_0 r} \pdv{(r B_\theta)}{r} B_\theta
    \\
    &= - \frac{1}{\mu_0 r} \bigg( \frac{1}{r} \pdvn{2}{\psi}{z} + \pdv{}{r}\Big( \frac{1}{r} \pdv{\psi}{r} \Big) \bigg) \pdv{\psi}{r}
    - \frac{1}{\mu_0 r} \pdv{(r B_\theta)}{r} B_\theta
\end{aligned}$$

By using the chain rule to rewrite $$\ipdv{}{r}= (\ipdv{\psi}{r}) \; \ipdv{}{\psi}$$,
we get $$\ipdv{\psi}{r}$$ in each term:

$$\begin{aligned}
    \pdv{\psi}{r} \pdv{p}{\psi}
    &= - \frac{1}{\mu_0 r} \bigg( \frac{1}{r} \pdvn{2}{\psi}{z} + \pdv{}{r}\Big( \frac{1}{r} \pdv{\psi}{r} \Big) \bigg) \pdv{\psi}{r}
    - \frac{1}{\mu_0 r} \pdv{\psi}{r} \pdv{(r B_\theta)}{\psi} B_\theta
\end{aligned}$$

Dividing out $$\ipdv{\psi}{r}$$ and multiplying by $$\mu_0 r^2$$
leads us to the **Grad-Shafranov equation**,
which gives the equilibrium condition of a plasma in a toroidal reactor:

$$\begin{aligned}
    \boxed{
        \pdvn{2}{\psi}{z} + r \pdv{}{r}\bigg( \frac{1}{r} \pdv{\psi}{r} \bigg)
        = - \mu_0 r^2 \pdv{p}{\psi} - r \pdv{(r B_\theta)}{\psi} B_\theta
    }
\end{aligned}$$

Weirdly, $$\psi$$ appears both as an unknown and as a differentiation variable,
but this equation can still be solved analytically by
assuming a certain $$\psi$$-dependence of $$p$$ and $$r B_\theta$$.

Suppose that $$B_\theta$$ is induced by a poloidal electrical current $$I_\mathrm{pol}$$,
i.e. a current around the "tube" of the torus,
then, assuming $$I_\mathrm{pol}$$ only depends on $$r$$, we have:

$$\begin{aligned}
    B_\theta
    = \frac{\mu_0 I_\mathrm{pol}(r)}{2 \pi r}
\end{aligned}$$

Inserting this into the Grad-Shafranov equation yields its following alternative form:

$$\begin{aligned}
    \boxed{
        \pdvn{2}{\psi}{z} + r \pdv{}{r}\bigg( \frac{1}{r} \pdv{\psi}{r} \bigg)
        = - \mu_0 r^2 \pdv{p}{\psi} - \frac{\mu_0^2}{8 \pi^2} \pdv{I_\mathrm{pol}^2}{\psi}
    }
\end{aligned}$$



## References
1.  M. Salewski, A.H. Nielsen,
    *Plasma physics: lecture notes*,
    2021, unpublished.