summaryrefslogtreecommitdiff
path: root/source/know/concept/greens-functions/index.md
blob: ddba2cd88e41e277f57fb43a1b2140f9386c434b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
---
title: "Green's functions"
sort_title: "Green's functions"
date: 2021-11-03
categories:
- Physics
- Quantum mechanics
layout: "concept"
---

In many-body quantum theory, a **Green's function**
can be any correlation function between two given operators,
although it is usually used to refer to the special case
where the operators are particle creation/annihilation operators
from the [second quantization](/know/concept/second-quantization/).

They are somewhat related to
[fundamental solutions](/know/concept/fundamental-solution/),
which are also called *Green's functions*,
but in general they are not the same,
except in a special case, see below.


## Single-particle functions

If the two operators are single-particle creation/annihilation operators,
then we get the **single-particle Green's functions**,
for which the symbol $$G$$ is used.

The **time-ordered** or **causal Green's function** $$G_{\nu \nu'}$$ is as follows,
where $$\mathcal{T}$$ is the [time-ordered product](/know/concept/time-ordered-product/),
$$\nu$$ and $$\nu'$$ are single-particle states,
and $$\hat{c}_\nu$$ annihilates a particle from $$\nu$$, etc.:

$$\begin{aligned}
    \boxed{
        G_{\nu \nu'}(t, t')
        \equiv -\frac{i}{\hbar} \Expval{\mathcal{T} \Big\{ \hat{c}_{\nu}(t) \: \hat{c}_{\nu'}^\dagger(t') \Big\}}
    }
\end{aligned}$$

The expectation value $$\Expval{}$$ is
with respect to thermodynamic equilibrium.
This is sometimes in the [canonical ensemble](/know/concept/canonical-ensemble/)
(for some two-particle Green's functions, see below),
but usually in the [grand canonical ensemble](/know/concept/grand-canonical-ensemble/),
since we are adding/removing particles.
In the latter case, we assume that the chemical potential $$\mu$$
is already included in the Hamiltonian $$\hat{H}$$.
Explicitly, for a complete set of many-particle states $$\Ket{\Psi_n}$$, we have:

$$\begin{aligned}
    G_{\nu \nu'}(t, t')
    &= -\frac{i}{\hbar Z} \Tr\!\Big( \mathcal{T} \Big\{ \hat{c}_{\nu}(t) \: \hat{c}_{\nu'}^\dagger(t')\Big\} \: e^{- \beta \hat{H}} \Big)
    \\
    &= -\frac{i}{\hbar Z} \sum_{n}
    \Matrixel{\Psi_n}{\mathcal{T} \Big\{ \hat{c}_{\nu}(t) \: \hat{c}_{\nu'}^\dagger(t')\Big\} \: e^{- \beta \hat{H}}}{\Psi_n}
\end{aligned}$$

Arguably more prevalent are
the **retarded Green's function** $$G_{\nu \nu'}^R$$
and the **advanced Green's function** $$G_{\nu \nu'}^A$$
which are defined like so:

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            G_{\nu \nu'}^R(t, t')
            &\equiv -\frac{i}{\hbar} \Theta(t - t') \Expval{\comm{\hat{c}_{\nu}(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
            \\
            G_{\nu \nu'}^A(t, t')
            &\equiv \frac{i}{\hbar} \Theta(t' - t) \Expval{\comm{\hat{c}_{\nu}(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
        \end{aligned}
    }
\end{aligned}$$

Where $$\Theta$$ is a [Heaviside function](/know/concept/heaviside-step-function/),
and $$[,]_{\mp}$$ is a commutator for bosons,
and an anticommutator for fermions.
Depending on the context,
we could either be in the [Heisenberg picture](/know/concept/heisenberg-picture/)
or in the [interaction picture](/know/concept/interaction-picture/),
hence $$\hat{c}_\nu$$ and $$\hat{c}_{\nu'}^\dagger$$ are time-dependent.

Furthermore, the **greater Green's function** $$G_{\nu \nu'}^>$$
and **lesser Green's function** $$G_{\nu \nu'}^<$$ are:

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            G_{\nu \nu'}^>(t, t')
            &\equiv -\frac{i}{\hbar} \Expval{\hat{c}_{\nu}(t) \: \hat{c}_{\nu'}^\dagger(t')}
            \\
            G_{\nu \nu'}^<(t, t')
            &\equiv \mp \frac{i}{\hbar} \Expval{\hat{c}_{\nu'}^\dagger(t') \: \hat{c}_{\nu}(t)}
        \end{aligned}
    }
\end{aligned}$$

Where $$-$$ is for bosons, and $$+$$ for fermions.
With this, the causal, retarded and advanced Green's functions
can thus be expressed as follows:

$$\begin{aligned}
    G_{\nu \nu'}(t, t')
    &= \Theta(t - t') \: G_{\nu \nu'}^>(t, t') + \Theta(t' - t) \: G_{\nu \nu'}^<(t, t')
    \\
    G_{\nu \nu'}^R(t, t')
    &= \Theta(t - t') \big( G_{\nu \nu'}^>(t, t') - G_{\nu \nu'}^<(t, t') \big)
    \\
    G_{\nu \nu'}^A(t, t')
    &= \Theta(t' - t) \big( G_{\nu \nu'}^<(t, t') - G_{\nu \nu'}^>(t, t') \big)
\end{aligned}$$

If the Hamiltonian involves interactions,
it might be more natural to use quantum field operators $$\hat{\Psi}(\vb{r}, t)$$
instead of choosing a basis of single-particle states $$\psi_\nu$$.
In that case, instead of a label $$\nu$$,
we use the spin $$s$$ and position $$\vb{r}$$, leading to:

$$\begin{aligned}
    G_{ss'}(\vb{r}, t; \vb{r}', t')
    &= -\frac{i}{\hbar} \Theta(t - t') \Expval{\mathcal{T}\Big\{ \hat{\Psi}_{s}(\vb{r}, t) \hat{\Psi}_{s'}^\dagger(\vb{r}', t') \Big\}}
    \\
    &= \sum_{\nu \nu'} \psi_\nu(\vb{r}) \: \psi^*_{\nu'}(\vb{r}') \: G_{\nu \nu'}(t, t')
\end{aligned}$$

And analogously for $$G_{ss'}^R$$, $$G_{ss'}^A$$, $$G_{ss'}^>$$ and $$G_{ss'}^<$$.
Note that the time-dependence is given to the old $$G_{\nu \nu'}$$,
i.e. to $$\hat{c}_\nu$$ and $$\hat{c}_{\nu'}^\dagger$$,
because we are in the Heisenberg picture.

If the Hamiltonian is time-independent,
then it can be shown that all the Green's functions
only depend on the time-difference $$t - t'$$:

$$\begin{gathered}
    G_{\nu \nu'}(t, t') = G_{\nu \nu'}(t - t')
    \\
    G_{\nu \nu'}^R(t, t') = G_{\nu \nu'}^R(t - t')
    \qquad \quad
    G_{\nu \nu'}^A(t, t') = G_{\nu \nu'}^A(t - t')
    \\
    G_{\nu \nu'}^>(t, t') = G_{\nu \nu'}^>(t - t')
    \qquad \quad
    G_{\nu \nu'}^<(t, t') = G_{\nu \nu'}^<(t - t')
\end{gathered}$$

<div class="accordion">
<input type="checkbox" id="proof-time-diff"/>
<label for="proof-time-diff">Proof</label>
<div class="hidden" markdown="1">
<label for="proof-time-diff">Proof.</label>
We will prove that the thermal expectation value
$$\expval{\hat{A}(t) \hat{B}(t')}$$ only depends on $$t - t'$$
for arbitrary $$\hat{A}$$ and $$\hat{B}$$,
and it trivially follows that the Green's functions do too.

In (grand) canonical equilibrium, we know that the
[density operator](/know/concept/density-operator/)
$$\hat{\rho}$$ is as follows:

$$\begin{aligned}
    \hat{\rho} = \frac{1}{Z} \exp(- \beta \hat{H})
\end{aligned}$$

The expected value of the product
of the time-independent operators $$\hat{A}$$ and $$\hat{B}$$ is then:

$$\begin{aligned}
    \expval{\hat{A}(t) \hat{B}(t')}
    &= \frac{1}{Z} \Tr\!\big( \hat{\rho} \hat{A}(t) \hat{B}(t') \big)
    \\
    &= \frac{1}{Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{i t \hat{H} / \hbar} \hat{A} e^{-i t \hat{H} / \hbar}
    e^{i t' \hat{H} / \hbar} \hat{B} e^{-i t' \hat{H} / \hbar} \Big)
\end{aligned}$$

Using that the trace $$\Tr$$ is invariant
under cyclic permutations of its argument,
and that all functions of $$\hat{H}$$ commute, we find:

$$\begin{aligned}
    \expval{\hat{A}(t) \hat{B}(t')}
    = \frac{1}{Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{i (t - t') \hat{H} / \hbar} \hat{A} e^{-i (t - t') \hat{H} / \hbar} \hat{B} \Big)
\end{aligned}$$

As expected, this only depends on the time difference $$t - t'$$,
because $$\hat{H}$$ is time-independent by assumption.
Note that thermodynamic equilibrium is crucial:
intuitively, if the system is not in equilibrium,
then it evolves in some transient time-dependent way.
</div>
</div>

If the Hamiltonian is both time-independent and non-interacting,
then the time-dependence of $$\hat{c}_\nu$$
can simply be factored out as
$$\hat{c}_\nu(t) = \hat{c}_\nu \exp(- i \varepsilon_\nu t / \hbar)$$.
Then the diagonal ($$\nu = \nu'$$) greater and lesser Green's functions
can be written in the form below, where $$f_\nu$$ is either
the [Fermi-Dirac distribution](/know/concept/fermi-dirac-distribution/)
or the [Bose-Einstein distribution](/know/concept/bose-einstein-distribution/).

$$\begin{aligned}
    G_{\nu \nu}^>(t, t')
    &= -\frac{i}{\hbar} \Expval{\hat{c}_{\nu} \hat{c}_{\nu}^\dagger} \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big)
    \\
    &= -\frac{i}{\hbar} (1 - f_\nu) \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big)
    \\
    G_{\nu \nu}^<(t, t')
    &= \mp \frac{i}{\hbar} \Expval{\hat{c}_{\nu}^\dagger \hat{c}_{\nu}} \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big)
    \\
    &= \mp \frac{i}{\hbar} f_\nu \exp\!\big(\!-\! i \varepsilon_\nu (t \!-\! t') / \hbar \big)
\end{aligned}$$


## As fundamental solutions

In the absence of interactions,
we know from the derivation of
[equation-of-motion theory](/know/concept/equation-of-motion-theory/)
that the equation of motion of $$G^R(\vb{r}, t; \vb{r}', t')$$
is as follows (neglecting spin):

$$\begin{aligned}
    i \hbar \pdv{G^R}{t}
    = \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t')
    + \frac{i}{\hbar} \Theta(t \!-\! t') \Expval{\Comm{\comm{\hat{H}_0}{\hat{\Psi}(\vb{r}, t)}}{\hat{\Psi}^\dagger(\vb{r}', t')}}
\end{aligned}$$

If $$\hat{H}_0$$ only contains kinetic energy,
i.e. there is no external potential,
it can be shown that:

$$\begin{aligned}
    \comm{\hat{H}_0}{\hat{\Psi}(\vb{r})}
    = \frac{\hbar^2}{2 m} \nabla^2 \hat{\Psi}(\vb{r})
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-commH0"/>
<label for="proof-commH0">Proof</label>
<div class="hidden" markdown="1">
<label for="proof-commH0">Proof.</label>
In the second quantization,
the Hamiltonian $$\hat{H}_0$$ is written like so:

$$\begin{aligned}
    \hat{H}_0
    &= - \frac{\hbar^2}{2 m} \sum_{\nu \nu'} \hat{c}_\nu^\dagger \hat{c}_{\nu'} \Inprod{\psi_\nu}{\nabla^2 \psi_{\nu'}}
    \\
    &= - \frac{\hbar^2}{2 m} \sum_{\nu \nu'} \hat{c}_\nu^\dagger \hat{c}_{\nu'} \int \psi_\nu^*(\vb{r}') \: \nabla^2 \psi_{\nu'}(\vb{r}') \dd{\vb{r}'}
    \\
    &= - \frac{\hbar^2}{2 m}
    \int \Big( \sum_{\nu} \psi_\nu^*(\vb{r}') \hat{c}_\nu^\dagger \Big) \Big( \nabla^2 \sum_{\nu'} \psi_{\nu'}(\vb{r}') \hat{c}_{\nu'} \Big) \dd{\vb{r}'}
    \\
    &= - \frac{\hbar^2}{2 m}
    \int \hat{\Psi}^\dagger(\vb{r}') \: \nabla^2 \hat{\Psi}(\vb{r}') \dd{\vb{r}'}
\end{aligned}$$

We then insert this into the commutator that we want to prove, yielding:

$$\begin{aligned}
    \comm{\hat{H}_0}{\hat{\Psi}(\vb{r})}
    &= - \frac{\hbar^2}{2 m} \int \Comm{\hat{\Psi}^\dagger(\vb{r}') \: \nabla^2 \hat{\Psi}(\vb{r}')}{\hat{\Psi}(\vb{r})} \dd{\vb{r}'}
    \\
    &= - \frac{\hbar^2}{2 m} \int \hat{\Psi}^\dagger(\vb{r}') \Comm{\nabla^2 \hat{\Psi}(\vb{r}')}{\hat{\Psi}(\vb{r})}
    + \Comm{\hat{\Psi}^\dagger(\vb{r}')}{\hat{\Psi}(\vb{r})} \nabla^2 \hat{\Psi}(\vb{r}') \dd{\vb{r}'}
    \\
    &= - \frac{\hbar^2}{2 m} \sum_{\nu \nu' \nu''}
    \Big( \hat{c}_\nu^\dagger \comm{\hat{c}_{\nu''}}{\hat{c}_{\nu'}} + \comm{\hat{c}_\nu^\dagger}{\hat{c}_{\nu'}} \hat{c}_{\nu''} \Big)
    \psi_{\nu'}(\vb{r}) \int \psi_\nu^*(\vb{r}') \: \nabla^2 \psi_{\nu''}(\vb{r}') \dd{\vb{r}'}
\end{aligned}$$

When deriving equation-of-motion theory,
we already showed that the following identity
holds for both bosons and fermions:

$$\begin{aligned}
    \hat{c}_\nu^\dagger \comm{\hat{c}_{\nu''}}{\hat{c}_{\nu'}} + \comm{\hat{c}_\nu^\dagger}{\hat{c}_{\nu'}} \hat{c}_{\nu''}
    = - \delta_{\nu \nu'} \hat{c}_{\nu''}
\end{aligned}$$

Such that the commutator can be significantly simplified to:

$$\begin{aligned}
    \comm{\hat{H}_0}{\hat{\Psi}(\vb{r})}
    &= \frac{\hbar^2}{2 m} \sum_{\nu \nu'} \hat{c}_{\nu'}
    \int \psi_\nu^*(\vb{r}') \: \psi_\nu(\vb{r}) \: \nabla^2 \psi_{\nu'}(\vb{r}') \dd{\vb{r}'}
\end{aligned}$$

We know that the $$\psi_\nu$$ form a *complete* basis,
which implies (see [Sturm-Liouville theory](/know/concept/sturm-liouville-theory/)):

$$\begin{aligned}
    \sum_{\nu} \psi_\nu^*(\vb{r}') \: \psi_\nu(\vb{r})
    = \delta(\vb{r} - \vb{r}')
\end{aligned}$$

With this, the commutator can be reduced even further as follows:

$$\begin{aligned}
    \comm{\hat{H}_0}{\hat{\Psi}(\vb{r})}
    &= \frac{\hbar^2}{2 m} \sum_{\nu \nu'} \hat{c}_{\nu'}
    \int \delta(\vb{r} - \vb{r}') \: \nabla^2 \psi_{\nu'}(\vb{r}') \dd{\vb{r}'}
    \\
    &= \frac{\hbar^2}{2 m} \sum_{\nu'} \hat{c}_{\nu'} \nabla^2 \psi_{\nu'}(\vb{r})
    = \frac{\hbar^2}{2 m} \nabla^2 \hat{\Psi}(\vb{r})
\end{aligned}$$

</div>
</div>

After substituting this into the equation of motion,
we recognize $$G^R(\vb{r}, t; \vb{r}', t')$$ itself:

$$\begin{aligned}
    i \hbar \pdv{G^R}{t}
    &= \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t')
    + \frac{i}{\hbar} \Theta(t \!-\! t') \Expval{\Comm{\frac{\hbar^2}{2 m} \nabla^2 \hat{\Psi}(\vb{r}, t)}{\hat{\Psi}^\dagger(\vb{r}', t')}}
    \\
    &= \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t') - \frac{\hbar^2}{2 m} \nabla_\vb{r}^2
    \Big( \!-\! \frac{i}{\hbar} \Theta(t \!-\! t') \Expval{\Comm{\hat{\Psi}(\vb{r}, t)}{\hat{\Psi}^\dagger(\vb{r}', t')}} \Big)
    \\
    &= \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t')
    - \frac{\hbar^2}{2 m} \nabla_\vb{r}^2 G^R(\vb{r}, t; \vb{r}', t')
\end{aligned}$$

Rearranging this leads to the following,
which is the definition of a fundamental solution:

$$\begin{aligned}
    \Big( i \hbar \pdv{}{t}+ \frac{\hbar^2}{2 m} \nabla_\vb{r}^2 \Big) G^R(\vb{r}, t; \vb{r}', t')
    &= \delta(\vb{r} \!-\! \vb{r}') \: \delta(t \!-\! t')
\end{aligned}$$

Therefore, the retarded Green's function
(and, it turns out, the advanced Green's function too)
is a fundamental solution of the Schrödinger equation
if there is no potential,
i.e. the Hamiltonian only contains kinetic energy.


## Two-particle functions

We generalize the above to two arbitrary operators $$\hat{A}$$ and $$\hat{B}$$,
giving us the **two-particle Green's functions**,
or just **correlation functions**.
The **causal correlation function** $$C_{AB}$$,
the **retarded correlation function** $$C_{AB}^R$$
and the **advanced correlation function** $$C_{AB}^A$$ are defined as follows
(in the Heisenberg picture):

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            C_{AB}(t, t')
            &\equiv -\frac{i}{\hbar} \Expval{\mathcal{T}\Big\{\hat{A}(t) \hat{B}(t')\Big\}}
            \\
            C_{AB}^R(t, t')
            &\equiv -\frac{i}{\hbar} \Theta(t - t') \Expval{\comm{\hat{A}(t)}{\hat{B}(t')}_{\mp}}
            \\
            C_{AB}^A(t, t')
            &\equiv \frac{i}{\hbar} \Theta(t' - t) \Expval{\comm{\hat{A}(t)}{\hat{B}(t')}_{\mp}}
        \end{aligned}
    }
\end{aligned}$$

Where the expectation value $$\Expval{}$$ is taken of thermodynamic equilibrium.
The name *two-particle* comes from the fact that $$\hat{A}$$ and $$\hat{B}$$
will often consist of a sum of products
of two single-particle creation/annihilation operators.

Like for the single-particle Green's functions,
if the Hamiltonian is time-independent,
then it can be shown that the two-particle functions
only depend on the time-difference $$t - t'$$:

$$\begin{aligned}
    G_{\nu \nu'}(t, t') = G_{\nu \nu'}(t \!-\! t')
    \qquad
    G_{\nu \nu'}^R(t, t') = G_{\nu \nu'}^>(t \!-\! t')
    \qquad
    G_{\nu \nu'}^A(t, t') = G_{\nu \nu'}^<(t \!-\! t')
\end{aligned}$$



## References
1.  H. Bruus, K. Flensberg,
    *Many-body quantum theory in condensed matter physics*,
    2016, Oxford.