1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
---
title: "Grönwall-Bellman inequality"
sort_title: "Gronwall-Bellman inequality" # sic
date: 2021-11-07
categories:
- Mathematics
layout: "concept"
---
Suppose we have a first-order ordinary differential equation for some function $$u(t)$$,
and assume that we can prove from this equation
that the derivative $$u'(t)$$ is bounded as follows:
$$\begin{aligned}
u'(t)
\le \beta(t) \: u(t)
\end{aligned}$$
Where $$\beta(t)$$ is known.
Then **Grönwall's inequality** states that the solution $$u(t)$$ is bounded:
$$\begin{aligned}
\boxed{
u(t)
\le u(0) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
}
\end{aligned}$$
{% include proof/start.html id="proof-original" -%}
We define $$w(t)$$ as equal to the upper bounds above
on both $$w'(t)$$ and $$w(t)$$ itself:
$$\begin{aligned}
w(t)
\equiv u(0) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
\quad \implies \quad
w'(t)
= \beta(t) \: w(t)
\end{aligned}$$
Where $$w(0) = u(0)$$.
Then the goal is to show the following for all $$t$$:
$$\begin{aligned}
\frac{u(t)}{w(t)} \le 1
\end{aligned}$$
For $$t = 0$$, this is trivial, since $$w(0) = u(0)$$ by definition.
For $$t > 0$$, we want $$w(t)$$ to grow at least as fast as $$u(t)$$
in order to satisfy the inequality.
We thus calculate:
$$\begin{aligned}
\dv{}{t}\bigg( \frac{u}{w} \bigg)
= \frac{u' w - u w'}{w^2}
= \frac{u' w - u \beta w}{w^2}
= \frac{u' - u \beta}{w}
\end{aligned}$$
Since $$u' \le \beta u$$ as a condition,
the above derivative is always negative.
{% include proof/end.html id="proof-original" %}
Grönwall's inequality can be generalized to non-differentiable functions.
Suppose we know:
$$\begin{aligned}
u(t)
\le \alpha(t) + \int_0^t \beta(s) \: u(s) \dd{s}
\end{aligned}$$
Where $$\alpha(t)$$ and $$\beta(t)$$ are known.
Then the **Grönwall-Bellman inequality** states that:
$$\begin{aligned}
\boxed{
u(t)
\le \alpha(t) + \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
}
\end{aligned}$$
{% include proof/start.html id="proof-integral" -%}
We start by defining $$w(t)$$ as follows,
which will act as shorthand:
$$\begin{aligned}
w(t)
\equiv \exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg) \bigg( \int_0^t \beta(s) \: u(s) \dd{s} \bigg)
\end{aligned}$$
Its derivative $$w'(t)$$ is then straightforwardly calculated to be given by:
$$\begin{aligned}
w'(t)
&= \bigg( \dv{}{t} \int_0^t \beta(s) \: u(s) \dd{s} - \beta(t)\int_0^t \beta(s) \: u(s) \dd{s} \bigg)
\exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg)
\\
&= \beta(t) \bigg( u(t) - \int_0^t \beta(s) \: u(s) \dd{s} \bigg)
\exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg)
\end{aligned}$$
The parenthesized expression is bounded from above by $$\alpha(t)$$,
thanks to the condition that $$u(t)$$ is assumed to satisfy,
for the Grönwall-Bellman inequality to be true:
$$\begin{aligned}
w'(t)
\le \alpha(t) \: \beta(t) \exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg)
\end{aligned}$$
Integrating this to find $$w(t)$$ yields the following result:
$$\begin{aligned}
w(t)
\le \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \!-\!\! \int_0^s \beta(r) \dd{r} \bigg) \dd{s}
\end{aligned}$$
In the initial definition of $$w(t)$$,
we now move the exponential to the other side,
and rewrite it using the above inequality for $$w(t)$$:
$$\begin{aligned}
\int_0^t \beta(s) \: u(s) \dd{s}
&= w(t) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
\\
&\le \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_0^t \beta(r) \dd{r} \bigg) \exp\!\bigg( \!-\!\! \int_0^s \beta(r) \dd{r} \bigg) \dd{s}
\\
&\le \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg)
\end{aligned}$$
This yields the desired result after inserting it
into the condition under which the Grönwall-Bellman inequality holds.
{% include proof/end.html id="proof-integral" %}
In the special case where $$\alpha(t)$$ is non-decreasing with $$t$$,
the inequality reduces to:
$$\begin{aligned}
\boxed{
u(t)
\le \alpha(t) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
}
\end{aligned}$$
{% include proof/start.html id="proof-special" -%}
Starting from the "ordinary" Grönwall-Bellman inequality,
the fact that $$\alpha(t)$$ is non-decreasing tells us that
$$\alpha(s) \le \alpha(t)$$ for all $$s \le t$$, so:
$$\begin{aligned}
u(t)
&\le \alpha(t) + \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
\\
&\le \alpha(t) + \alpha(t) \int_0^t \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
\end{aligned}$$
Now, consider the following straightforward identity, involving the exponential:
$$\begin{aligned}
\dv{}{s}\exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg)
&= - \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg)
\end{aligned}$$
By inserting this into normal Grönwall-Bellman inequality, we arrive at:
$$\begin{aligned}
u(t)
&\le \alpha(t) - \alpha(t) \int_0^t \dv{}{s}\exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
\\
&\le \alpha(t) - \alpha(t) \bigg[ \int \dv{}{s}\exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s} \bigg]_{s = 0}^{s = t}
\end{aligned}$$
Where we have converted the outer integral from definite to indefinite.
Continuing:
$$\begin{aligned}
u(t)
&\le \alpha(t) - \alpha(t) \bigg[ \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \bigg]_{s = 0}^{s = t}
\\
&\le \alpha(t) - \alpha(t) \exp\!\bigg( \int_t^t \beta(r) \dd{r} \bigg) + \alpha(t) \exp\!\bigg( \int_0^t \beta(r) \dd{r} \bigg)
\\
&\le \alpha(t) - \alpha(t) + \alpha(t) \exp\!\bigg( \int_0^t \beta(r) \dd{r} \bigg)
\end{aligned}$$
{% include proof/end.html id="proof-special" %}
## References
1. U.H. Thygesen,
*Lecture notes on diffusions and stochastic differential equations*,
2021, Polyteknisk Kompendie.
|