1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
|
---
title: "Guiding center theory"
sort_title: "Guiding center theory"
date: 2021-09-21
categories:
- Physics
- Electromagnetism
- Plasma physics
layout: "concept"
---
When discussing the [Lorentz force](/know/concept/lorentz-force/),
we introduced the concept of *gyration*:
a particle in a uniform [magnetic field](/know/concept/magnetic-field/) $$\vb{B}$$
*gyrates* in a circular orbit around a **guiding center**.
Here, we will generalize this result
to more complicated situations,
for example involving [electric fields](/know/concept/electric-field/).
The particle's equation of motion
combines the Lorentz force $$\vb{F}$$
with Newton's second law:
$$\begin{aligned}
\vb{F}
= m \dv{\vb{u}}{t}
= q \big( \vb{E} + \vb{u} \cross \vb{B} \big)
\end{aligned}$$
We now allow the fields vary slowly in time and space.
We thus add deviations $$\delta\vb{E}$$ and $$\delta\vb{B}$$:
$$\begin{aligned}
\vb{E}
\to \vb{E} + \delta\vb{E}(\vb{x}, t)
\qquad \quad
\vb{B}
\to \vb{B} + \delta\vb{B}(\vb{x}, t)
\end{aligned}$$
Meanwhile, the velocity $$\vb{u}$$ can be split into
the guiding center's motion $$\vb{u}_{gc}$$
and the *known* Larmor gyration $$\vb{u}_L$$ around the guiding center,
such that $$\vb{u} = \vb{u}_{gc} + \vb{u}_L$$.
Inserting:
$$\begin{aligned}
m \dv{}{t}\big( \vb{u}_{gc} + \vb{u}_L \big)
= q \big( \vb{E} + \delta\vb{E} + (\vb{u}_{gc} + \vb{u}_L) \cross (\vb{B} + \delta\vb{B}) \big)
\end{aligned}$$
We already know that $$m \: \idv{\vb{u}_L}{t} = q \vb{u}_L \cross \vb{B}$$,
which we subtract from the total to get:
$$\begin{aligned}
m \dv{\vb{u}_{gc}}{t}
= q \big( \vb{E} + \delta\vb{E} + \vb{u}_{gc} \cross (\vb{B} + \delta\vb{B}) + \vb{u}_L \cross \delta\vb{B} \big)
\end{aligned}$$
This will be our starting point.
Before proceeding, we also define
the average of $$\Expval{f}$$ of a function $$f$$ over a single gyroperiod,
where $$\omega_c$$ is the cyclotron frequency:
$$\begin{aligned}
\Expval{f}
\equiv \int_0^{2 \pi / \omega_c} f(t) \dd{t}
\end{aligned}$$
Assuming that gyration is much faster than the guiding center's motion,
we can use this average to approximately remove the finer dynamics,
and focus only on the guiding center.
## Uniform electric and magnetic field
Consider the case where $$\vb{E}$$ and $$\vb{B}$$ are both uniform,
such that $$\delta\vb{B} = 0$$ and $$\delta\vb{E} = 0$$:
$$\begin{aligned}
m \dv{\vb{u}_{gc}}{t}
= q \big( \vb{E} + \vb{u}_{gc} \cross \vb{B} \big)
\end{aligned}$$
Dotting this with the unit vector $$\vu{b} \equiv \vb{B} / |\vb{B}|$$
makes all components perpendicular to $$\vb{B}$$ vanish,
including the cross product,
leaving only the (scalar) parallel components
$$u_{gc\parallel}$$ and $$E_\parallel$$:
$$\begin{aligned}
m \dv{u_{gc\parallel}}{t}
= \frac{q}{m} E_{\parallel}
\end{aligned}$$
This simply describes a constant acceleration,
and is easy to integrate.
Next, the equation for $$\vb{u}_{gc\perp}$$ is found by
subtracting $$u_{gc\parallel}$$'s equation from the original:
$$\begin{aligned}
m \dv{\vb{u}_{gc\perp}}{t}
= q (\vb{E} + \vb{u}_{gc} \cross \vb{B}) - q E_\parallel \vu{b}
= q (\vb{E}_\perp + \vb{u}_{gc\perp} \cross \vb{B})
\end{aligned}$$
Keep in mind that $$\vb{u}_{gc\perp}$$ explicitly excludes gyration.
If we try to split $$\vb{u}_{gc\perp}$$ into a constant and a time-dependent part,
and choose the most convenient constant,
we notice that the only way to exclude gyration
is to demand that $$\vb{u}_{gc\perp}$$ does not depend on time.
Therefore:
$$\begin{aligned}
0
= \vb{E}_\perp + \vb{u}_{gc\perp} \cross \vb{B}
\end{aligned}$$
To find $$\vb{u}_{gc\perp}$$, we take the cross product with $$\vb{B}$$,
and use the fact that $$\vb{B} \cross \vb{E}_\perp = \vb{B} \cross \vb{E}$$:
$$\begin{aligned}
0
= \vb{B} \cross (\vb{E}_\perp + \vb{u}_{gc\perp} \cross \vb{B})
= \vb{B} \cross \vb{E} + \vb{u}_{gc\perp} B^2
\end{aligned}$$
Rearranging this shows that $$\vb{u}_{gc\perp}$$ is constant.
The guiding center drifts sideways at this speed,
hence it is called a **drift velocity** $$\vb{v}_E$$.
Curiously, $$\vb{v}_E$$ is independent of $$q$$:
$$\begin{aligned}
\boxed{
\vb{v}_E
= \frac{\vb{E} \cross \vb{B}}{B^2}
}
\end{aligned}$$
Drift is not specific to an electric field:
$$\vb{E}$$ can be replaced by a general force $$\vb{F}/q$$ without issues.
In that case, the resulting drift velocity $$\vb{v}_F$$ does depend on $$q$$:
$$\begin{aligned}
\boxed{
\vb{v}_F
= \frac{\vb{F} \cross \vb{B}}{q B^2}
}
\end{aligned}$$
## Non-uniform magnetic field
Next, consider a more general case, where $$\vb{B}$$ is non-uniform,
but $$\vb{E}$$ is still uniform:
$$\begin{aligned}
m \dv{\vb{u}_{gc}}{t}
= q \big( \vb{E} + \vb{u}_{gc} \cross (\vb{B} + \delta\vb{B}) + \vb{u}_L \cross \delta\vb{B} \big)
\end{aligned}$$
Assuming the gyroradius $$r_L$$ is small compared to the variation of $$\vb{B}$$,
we set $$\delta\vb{B}$$ to the first-order term
of a Taylor expansion of $$\vb{B}$$ around $$\vb{x}_{gc}$$,
that is, $$\delta\vb{B} = (\vb{x}_L \cdot \nabla) \vb{B}$$.
We thus have:
$$\begin{aligned}
m \dv{\vb{u}_{gc}}{t}
= q \big( \vb{E} + \vb{u}_{gc} \cross \vb{B}
+ \vb{u}_{gc} \cross (\vb{x}_L \cdot \nabla) \vb{B}
+ \vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B} \big)
\end{aligned}$$
We approximate this by taking the average over a single gyration,
as defined earlier:
$$\begin{aligned}
m \dv{\vb{u}_{gc}}{t}
= q \big( \vb{E} + \vb{u}_{gc} \cross \vb{B}
+ \vb{u}_{gc} \cross \Expval{ (\vb{x}_L \cdot \nabla) \vb{B} }
+ \Expval{ \vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B} } \big)
\end{aligned}$$
Where we have used that $$\Expval{\vb{u}_{gc}} = \vb{u}_{gc}$$.
The two averaged expressions turn out to be:
$$\begin{aligned}
\Expval{ (\vb{x}_L \cdot \nabla) \vb{B} }
= 0
\qquad \quad
\Expval{ \vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B} }
\approx - \frac{u_L^2}{2 \omega_c} \nabla B
\end{aligned}$$
{% include proof/start.html id="proof-averages" -%}
We know what $$\vb{x}_L$$ is,
so we can write out $$(\vb{x}_L \cdot \nabla) \vb{B}$$
for $$\vb{B} = (B_x, B_y, B_z)$$:
$$\begin{aligned}
(\vb{x}_L \cdot \nabla) \vb{B}
= \frac{u_L}{\omega_c}
\begin{pmatrix}
\displaystyle \sin(\omega_c t) \pdv{B_x}{x} + \cos(\omega_c t) \pdv{B_x}{y} \\
\displaystyle \sin(\omega_c t) \pdv{B_y}{x} + \cos(\omega_c t) \pdv{B_y}{y} \\
\displaystyle \sin(\omega_c t) \pdv{B_z}{x} + \cos(\omega_c t) \pdv{B_z}{y}
\end{pmatrix}
\end{aligned}$$
Integrating $$\sin$$ and $$\cos$$ over their period yields zero,
so the average vanishes:
$$\begin{aligned}
\Expval{ (\vb{x}_L \cdot \nabla) \vb{B} }
= 0
\end{aligned}$$
Moving on, we write out $$\vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B}$$,
suppressing the arguments of $$\sin$$ and $$\cos$$:
$$\begin{aligned}
\vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B}
&= \frac{u_L^2}{\omega_c}
\begin{pmatrix}
\cos \\
- \sin \\
0
\end{pmatrix}
\cross
\begin{pmatrix}
\displaystyle \pdv{B_x}{x} \sin + \pdv{B_x}{y} \cos \\
\displaystyle \pdv{B_y}{x} \sin + \pdv{B_y}{y} \cos \\
\displaystyle \pdv{B_z}{x} \sin + \pdv{B_z}{y} \cos
\end{pmatrix}
\\
&= \frac{u_L^2}{\omega_c}
\begin{pmatrix}
\displaystyle - \pdv{B_z}{x} \sin^2 - \pdv{B_z}{y} \sin \cos \\
\displaystyle - \pdv{B_z}{x} \sin \cos - \pdv{B_z}{y} \cos^2 \\
\displaystyle \pdv{B_y}{x} \sin \cos + \pdv{B_y}{y} \cos^2
\displaystyle + \pdv{B_x}{x} \sin^2 + \pdv{B_x}{y} \sin \cos
\end{pmatrix}
\end{aligned}$$
Integrating products of $$\sin$$ and $$\cos$$ over their period gives us the following:
$$\begin{aligned}
\Expval{\cos^2} = \Expval{\sin^2} = \frac{1}{2}
\qquad \quad
\Expval{\sin \cos} = 0
\end{aligned}$$
Inserting this tells us that the average
of $$\vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B}$$ is given by:
$$\begin{aligned}
\Expval{ \vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B} }
&= \frac{u_L^2}{2 \omega_c}
\begin{pmatrix}
\displaystyle - \pdv{B_z}{x} \\
\displaystyle - \pdv{B_z}{y} \\
\displaystyle \pdv{B_y}{y} + \pdv{B_x}{x}
\end{pmatrix}
\end{aligned}$$
We use [Maxwell's equation](/know/concept/maxwells-equations/) $$\nabla \cdot \vb{B} = 0$$
to rewrite the $$z$$-component,
and follow the convention that $$\vb{B}$$
points mostly in the $$z$$-direction,
such that $$B \equiv |\vb{B}| \approx B_z$$:
$$\begin{aligned}
\Expval{ \vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B} }
&= - \frac{u_L^2}{2 \omega_c}
\begin{pmatrix}
\displaystyle \pdv{B_z}{x} \\
\displaystyle \pdv{B_z}{y} \\
\displaystyle \pdv{B_z}{z}
\end{pmatrix}
\approx - \frac{u_L^2}{2 \omega_c}
\begin{pmatrix}
\displaystyle \pdv{B}{x} \\
\displaystyle \pdv{B}{y} \\
\displaystyle \pdv{B}{z}
\end{pmatrix}
= - \frac{u_L^2}{2 \omega_c} \nabla B
\end{aligned}$$
{% include proof/end.html id="proof-averages" %}
With this, the guiding center's equation of motion
is reduced to the following:
$$\begin{aligned}
m \dv{\vb{u}_{gc}}{t}
= q \bigg( \vb{E} + \vb{u}_{gc} \cross \vb{B} - \frac{u_L^2}{2 \omega_c} \nabla B \bigg)
\end{aligned}$$
Let us now split $$\vb{u}_{gc}$$ into
components $$\vb{u}_{gc\perp}$$ and $$u_{gc\parallel} \vu{b}$$,
which are respectively perpendicular and parallel
to the magnetic unit vector $$\vu{b}$$,
such that $$\vb{u}_{gc} = \vb{u}_{gc\perp} \!+\! u_{gc\parallel} \vu{b}$$.
Consequently:
$$\begin{aligned}
\dv{\vb{u}_{gc}}{t}
= \dv{\vb{u}_{gc\perp}}{t} + \dv{u_{gc\parallel}}{t} \vu{b} + u_{gc\parallel} \dv{\vu{b}}{t}
\end{aligned}$$
Inserting this into the guiding center's equation of motion,
we now have:
$$\begin{aligned}
\dv{\vb{u}_{gc}}{t}
= m \bigg( \dv{\vb{u}_{gc\perp}}{t} + \dv{u_{gc\parallel}}{t} \vu{b} + u_{gc\parallel} \dv{\vu{b}}{t} \bigg)
= q \bigg( \vb{E} + \vb{u}_{gc} \cross \vb{B} - \frac{u_L^2}{2 \omega_c} \nabla B \bigg)
\end{aligned}$$
The derivative of $$\vu{b}$$ can be rewritten as follows,
where $$R_c$$ is the radius of the field's [curvature](/know/concept/curvature/),
and $$\vb{R}_c$$ is the corresponding vector from the center of curvature:
$$\begin{aligned}
\dv{\vu{b}}{t}
\approx - u_{gc\parallel} \frac{\vb{R}_c}{R_c^2}
\end{aligned}$$
{% include proof/start.html id="proof-curvature" -%}
Assuming that $$\vu{b}$$ does not explicitly depend on time,
i.e. $$\ipdv{\vu{b}}{t} = 0$$,
we can rewrite the derivative using the chain rule:
$$\begin{aligned}
\dv{\vu{b}}{t}
= \pdv{\vu{b}}{s} \dv{s}{t}
= u_{gc\parallel} \dv{\vu{b}}{s}
\end{aligned}$$
Where $$\dd{s}$$ is the arc length of the magnetic field line,
which is equal to the radius $$R_c$$ times the infinitesimal subtended angle $$\dd{\theta}$$:
$$\begin{aligned}
\dd{s}
= R_c \dd{\theta}
\end{aligned}$$
Meanwhile, across this arc, $$\vu{b}$$ rotates by $$\dd{\theta}$$,
such that the tip travels a distance $$|\dd{\vu{b}}|$$:
$$\begin{aligned}
|\!\dd{\vu{b}}\!|
= |\vu{b}| \dd{\theta}
= \dd{\theta}
\end{aligned}$$
Furthermore, the direction $$\dd{\vu{b}}$$ is always opposite to $$\vu{R}_c$$,
which is defined as the unit vector from the center of curvature to the base of $$\vu{b}$$:
$$\begin{aligned}
\dd{\vu{b}}
= - \vu{R}_c \dd{\theta}
\end{aligned}$$
Combining these expressions for $$\dd{s}$$ and $$\dd{\vu{b}}$$,
we find the following derivative:
$$\begin{aligned}
\dv{\vu{b}}{s}
= - \frac{\vu{R}_c \dd{\theta}}{R_c \dd{\theta}}
= - \frac{\vu{R}_c}{R_c}
= - \frac{\vb{R}_c}{R_c^2}
\end{aligned}$$
{% include proof/end.html id="proof-curvature" %}
With this, we arrive at the following equation of motion
for the guiding center:
$$\begin{aligned}
m \bigg( \dv{\vb{u}_{gc\perp}}{t} + \dv{u_{gc\parallel}}{t} \vu{b} - u_{gc\parallel}^2 \frac{\vb{R}_c}{R_c} \bigg)
= q \bigg( \vb{E} + \vb{u}_{gc} \cross \vb{B} - \frac{u_L^2}{2 \omega_c} \nabla B \bigg)
\end{aligned}$$
Since both $$\vb{R}_c$$ and any cross product with $$\vb{B}$$
will always be perpendicular to $$\vb{B}$$,
we can split this equation into perpendicular and parallel components like so:
$$\begin{aligned}
m \dv{\vb{u}_{gc\perp}}{t}
&= q \vb{E}_{\perp} - \frac{q u_L^2}{2 \omega_c} \nabla_{\!\perp} B + m u_{gc\parallel}^2 \frac{\vb{R}_c}{R_c} + q \vb{u}_{gc} \cross \vb{B}
\\
m \dv{u_{gc\parallel}}{t}
&= q E_{\parallel} - \frac{q u_L^2}{2 \omega_c} \nabla_{\!\parallel} B
\end{aligned}$$
The parallel part simply describes an acceleration.
The perpendicular part is more interesting:
we rewrite it as follows, defining an effective force $$\vb{F}_{\!\perp}$$:
$$\begin{aligned}
m \dv{\vb{u}_{gc\perp}}{t}
= \vb{F}_{\!\perp} + q \vb{u}_{gc} \cross \vb{B}
\qquad \quad
\vb{F}_{\!\perp}
\equiv q \vb{E}_\perp + m u_{gc\parallel}^2 \frac{\vb{R}_c}{R_c} - \frac{q u_L^2}{2 \omega_c} \nabla_{\!\perp} B
\end{aligned}$$
To solve this, we make a crude approximation now, and improve it later.
We thus assume that $$\vb{u}_{gc\perp}$$ is constant in time,
such that the equation reduces to:
$$\begin{aligned}
0
\approx \vb{F}_{\!\perp} + q \vb{u}_{gc} \cross \vb{B}
= \vb{F}_{\!\perp} + q \vb{u}_{gc\perp} \cross \vb{B}
\end{aligned}$$
This is analogous to the previous case of a uniform electric field,
with $$q \vb{E}$$ replaced by $$\vb{F}_{\!\perp}$$,
so it is also solved by crossing with $$\vb{B}$$ in front,
yielding a drift:
$$\begin{aligned}
\vb{u}_{gc\perp}
\approx \vb{v}_F
\equiv \frac{\vb{F}_{\!\perp} \cross \vb{B}}{q B^2}
\end{aligned}$$
From the definition of $$\vb{F}_{\!\perp}$$,
this total $$\vb{v}_F$$ can be split into three drifts:
the previously seen electric field drift $$\vb{v}_E$$,
the **curvature drift** $$\vb{v}_c$$,
and the **grad-$$\vb{B}$$ drift** $$\vb{v}_{\nabla B}$$:
$$\begin{aligned}
\boxed{
\vb{v}_c
= \frac{m u_{gc\parallel}^2}{q} \frac{\vb{R}_c \cross \vb{B}}{R_c^2 B^2}
}
\qquad \quad
\boxed{
\vb{v}_{\nabla B}
= \frac{u_L^2}{2 \omega_c} \frac{\vb{B} \cross \nabla B}{B^2}
}
\end{aligned}$$
Such that $$\vb{v}_F = \vb{v}_E + \vb{v}_c + \vb{v}_{\nabla B}$$.
We are still missing a correction,
since we neglected the time dependence of $$\vb{u}_{gc\perp}$$ earlier.
This correction is called $$\vb{v}_p$$,
where $$\vb{u}_{gc\perp} \approx \vb{v}_F + \vb{v}_p$$.
We revisit the perpendicular equation, which now reads:
$$\begin{aligned}
m \dv{}{t}\big( \vb{v}_F + \vb{v}_p \big)
= \vb{F}_{\!\perp} + q \big( \vb{v}_F + \vb{v}_p \big) \cross \vb{B}
\end{aligned}$$
We assume that $$\vb{v}_F$$ varies much faster than $$\vb{v}_p$$,
such that $$\idv{}{\vb{v}p}{t}$$ is negligible.
In addition, from the derivation of $$\vb{v}_F$$,
we know that $$\vb{F}_{\!\perp} + q \vb{v}_F \cross \vb{B} = 0$$,
leaving only:
$$\begin{aligned}
m \dv{\vb{v}_F}{t}
= q \vb{v}_p \cross \vb{B}
\end{aligned}$$
To isolate this for $$\vb{v}_p$$,
we take the cross product with $$\vb{B}$$ in front,
like earlier.
We thus arrive at the following correction,
known as the **polarization drift** $$\vb{v}_p$$:
$$\begin{aligned}
\boxed{
\vb{v}_p
= - \frac{m}{q B^2} \dv{\vb{v}_F}{t} \cross \vb{B}
}
\end{aligned}$$
In many cases $$\vb{v}_E$$ dominates $$\vb{v}_F$$,
so in some literature $$\vb{v}_p$$ is approximated as follows:
$$\begin{aligned}
\vb{v}_p
\approx - \frac{m}{q B^2} \dv{\vb{v}_E}{t} \cross \vb{B}
= - \frac{m}{q B^2} \Big( \dv{}{t}(\vb{E}_\perp \cross \vb{B}) \Big) \cross \vb{B}
= - \frac{m}{q B^2} \dv{\vb{E}_\perp}{t}
\end{aligned}$$
The polarization drift stands out from the others:
it has the opposite sign,
it is proportional to $$m$$,
and it is often only temporary.
Therefore, it is also called the **inertia drift**.
## References
1. F.F. Chen,
*Introduction to plasma physics and controlled fusion*,
3rd edition, Springer.
2. M. Salewski, A.H. Nielsen,
*Plasma physics: lecture notes*,
2021, unpublished.
|