blob: c6bf720029f6e1beb205afde87634aa0ba9dda96 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
---
title: "Hellmann-Feynman theorem"
sort_title: "Hellmann-Feynman theorem"
date: 2021-11-29
categories:
- Physics
- Quantum mechanics
layout: "concept"
---
Consider the time-independent Schrödinger equation,
where the Hamiltonian $$\hat{H}$$ depends on some parameter $$\lambda$$
whose meaning we will not specify:
$$\begin{aligned}
\hat{H}(\lambda) \ket{\psi_n(\lambda)}
= E_n(\lambda) \ket{\psi_n(\lambda)}
\end{aligned}$$
Assuming all eigenstates $$\ket{\psi_n}$$ are normalized,
this gives us the following basic relation:
$$\begin{aligned}
\matrixel{\psi_m}{\hat{H}}{\psi_n}
= E_n \inprod{\psi_m}{\psi_n}
= \delta_{mn} E_n
\end{aligned}$$
We differentiate this with respect to $$\lambda$$,
which could be a scalar or a vector.
This yields:
$$\begin{aligned}
\delta_{mn} \nabla_\lambda E_n
&= \nabla_\lambda \matrixel{\psi_m}{\hat{H}}{\psi_n}
\\
&= \matrixel{\nabla_\lambda \psi_m}{\hat{H}}{\psi_n}
+ \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n}
+ \matrixel{\psi_m}{\hat{H}}{\nabla_\lambda \psi_n}
\\
&= E_m \inprod{\psi_m}{\nabla_\lambda \psi_n} + E_n \inprod{\nabla_\lambda \psi_m}{\psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n}
\end{aligned}$$
In order to simplify this,
we differentiate the orthogonality relation
$$\inprod{\psi_m}{\psi_n} = \delta_{mn}$$:
$$\begin{aligned}
0
= \nabla_\lambda \delta_{mn}
= \nabla_\lambda \inprod{\psi_m}{\psi_n}
= \inprod{\nabla_\lambda \psi_m}{\psi_n} + \inprod{\psi_m}{\nabla_\lambda \psi_n}
\end{aligned}$$
Meaning that $$\inprod{\nabla_\lambda \psi_m}{\psi_n} = - \inprod{\psi_m}{\nabla_\lambda \psi_n}$$.
Using this result to replace $$\inprod{\nabla_\lambda \psi_m}{\psi_n}$$
in the previous equation leads to:
$$\begin{aligned}
\delta_{mn} \nabla_\lambda E_n
&= (E_m - E_n) \inprod{\psi_m}{\nabla_\lambda \psi_n} + \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n}
\end{aligned}$$
For $$m = n$$, we therefore arrive at the **Hellmann-Feynman theorem**,
which is useful when doing numerical calculations
that often involve minimizing energies with respect to $$\lambda$$:
$$\begin{aligned}
\boxed{
\nabla_\lambda E_n
= \matrixel{\psi_n}{\nabla_\lambda \hat{H}}{\psi_n}
}
\end{aligned}$$
While for $$m \neq n$$, we get the **Epstein generalization**
of the Hellmann-Feynman theorem, which is for example relevant for
the [Berry phase](/know/concept/berry-phase/):
$$\begin{aligned}
\boxed{
(E_n - E_m) \inprod{\psi_m}{\nabla_\lambda \psi_n}
= \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n}
}
\end{aligned}$$
## References
1. G. Grosso, G.P. Parravicini,
*Solid state physics*,
2nd edition, Elsevier.
|