summaryrefslogtreecommitdiff
path: root/source/know/concept/interaction-picture/index.md
blob: de469fae08d39f5dadc6819e3fdf070dec68f62d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
title: "Interaction picture"
sort_title: "Interaction picture"
date: 2021-09-13
categories:
- Physics
- Quantum mechanics
layout: "concept"
---

The **interaction picture** or **Dirac picture**
is an alternative formulation of quantum mechanics,
equivalent to both the Schrödinger picture
and the [Heisenberg picture](/know/concept/heisenberg-picture/).

Recall that Schrödinger lets states $$\Ket{\psi_S(t)}$$ evolve in time,
but keeps operators $$\hat{L}_S$$ fixed (except for explicit time dependence).
Meanwhile, Heisenberg keeps states $$\Ket{\psi_H}$$ fixed,
and puts all time dependence on the operators $$\hat{L}_H(t)$$.

However, in the interaction picture,
both the states $$\Ket{\psi_I(t)}$$ and the operators $$\hat{L}_I(t)$$
evolve in $$t$$.
This might seem unnecessarily complicated,
but it turns out be convenient when considering
a time-dependent "perturbation" $$\hat{H}_{1,S}$$
to a time-independent Hamiltonian $$\hat{H}_{0,S}$$:

$$\begin{aligned}
    \hat{H}_S(t)
    = \hat{H}_{0,S} + \hat{H}_{1,S}(t)
\end{aligned}$$

With $$\hat{H}_S(t)$$ the full Schrödinger Hamiltonian.
We define the unitary conversion operator:

$$\begin{aligned}
    \boxed{
        \hat{U}(t)
        \equiv \exp\!\bigg( i \frac{\hat{H}_{0,S} t}{\hbar} \bigg)
    }
\end{aligned}$$

The interaction-picture states $$\Ket{\psi_I(t)}$$ and operators $$\hat{L}_I(t)$$
are then defined to be:

$$\begin{aligned}
    \boxed{
        \Ket{\psi_I(t)}
        \equiv \hat{U}(t) \Ket{\psi_S(t)}
        \qquad
        \hat{L}_I(t)
        \equiv \hat{U}(t) \: \hat{L}_S(t) \: \hat{U}{}^\dagger(t)
    }
\end{aligned}$$


## Equations of motion

To find the equation of motion for $$\Ket{\psi_I(t)}$$,
we differentiate it and multiply by $$i \hbar$$:

$$\begin{aligned}
    i \hbar \dv{}{t}\Ket{\psi_I}
    &= i \hbar \Big( \dv{\hat{U}}{t} \Ket{\psi_S} + \hat{U} \dv{}{t}\Ket{\psi_S} \Big)
    \\
    &= i \hbar \Big( i \frac{\hat{H}_{0,S}}{\hbar} \Big) \hat{U} \Ket{\psi_S} + \hat{U} \Big( i \hbar \dv{}{t}\Ket{\psi_S} \Big)
\end{aligned}$$

We insert the Schrödinger equation into the second term,
and use $$\comm{\hat{U}}{\hat{H}_{0,S}} = 0$$:

$$\begin{aligned}
    i \hbar \dv{}{t}\Ket{\psi_I}
    &= - \hat{H}_{0,S} \hat{U} \Ket{\psi_S} + \hat{U} \hat{H}_S \Ket{\psi_S}
    \\
    &= \hat{U} \big( \!-\! \hat{H}_{0,S} + \hat{H}_S \big) \Ket{\psi_S}
    \\
    &= \hat{U} \big( \hat{H}_{1,S} \big) \hat{U}{}^\dagger \hat{U} \Ket{\psi_S}
\end{aligned}$$

Which leads to an analogue of the Schrödinger equation,
with $$\hat{H}_{1,I} = \hat{U} \hat{H}_{1,S} \hat{U}{}^\dagger$$:

$$\begin{aligned}
    \boxed{
        i \hbar \dv{}{t}\Ket{\psi_I(t)}
        = \hat{H}_{1,I}(t)  \Ket{\psi_I(t)}
    }
\end{aligned}$$

Next, we do the same with an operator $$\hat{L}_I$$
to find a description of its evolution in time:

$$\begin{aligned}
    \dv{}{t}\hat{L}_I
    &= \dv{\hat{U}}{t} \hat{L}_S \hat{U}{}^\dagger + \hat{U} \hat{L}_S \dv{\hat{U}{}^\dagger}{t} + \hat{U} \dv{\hat{L}_S}{t} \hat{U}{}^\dagger
    \\
    &= \frac{i}{\hbar} \hat{U} \hat{H}_{0,S} \big( \hat{U}{}^\dagger \hat{U} \big) \hat{L}_S \hat{U}{}^\dagger
    - \frac{i}{\hbar} \hat{U} \hat{L}_S \big( \hat{U}{}^\dagger \hat{U} \big) \hat{H}_{0,S} \hat{U}{}^\dagger
    + \Big( \dv{\hat{L}_S}{t} \Big)_I
    \\
    &= \frac{i}{\hbar} \hat{H}_{0,I} \hat{L}_I
    - \frac{i}{\hbar} \hat{L}_I \hat{H}_{0,I}
    + \Big( \dv{\hat{L}_S}{t} \Big)_I
    = \frac{i}{\hbar} \comm{\hat{H}_{0,I}}{\hat{L}_I} + \Big( \dv{\hat{L}_S}{t} \Big)_I
\end{aligned}$$

The result is analogous to the equation of motion in the Heisenberg picture:

$$\begin{aligned}
    \boxed{
        \dv{}{t}\hat{L}_I(t)
        = \frac{i}{\hbar} \comm{\hat{H}_{0,I}(t)}{\hat{L}_I(t)} + \Big( \dv{}{t}\hat{L}_S(t) \Big)_I
    }
\end{aligned}$$


## Time evolution operator

Recall that an alternative form of the Schrödinger equation is as follows,
where a **time evolution operator**  or
**generator of translations in time** $$K_S(t, t_0)$$
brings $$\Ket{\psi_S}$$ from time $$t_0$$ to $$t$$:

$$\begin{aligned}
    \Ket{\psi_S(t)}
    = \hat{K}_S(t, t_0) \Ket{\psi_S(t_0)}
    \qquad \quad
    \hat{K}_S(t, t_0)
    \equiv \exp\!\Big( \!-\! i \frac{\hat{H}_S (t - t_0)}{\hbar} \Big)
\end{aligned}$$

We want to find an analogous operator in the interaction picture, satisfying:

$$\begin{aligned}
    \Ket{\psi_I(t)}
    \equiv \hat{K}_I(t, t_0) \Ket{\psi_I(t_0)}
\end{aligned}$$

Inserting this definition into the equation of motion for $$\Ket{\psi_I}$$ yields
an equation for $$\hat{K}_I$$, with the logical boundary condition $$\hat{K}_I(t_0, t_0) = 1$$:

$$\begin{aligned}
    i \hbar \dv{}{t}\Big( \hat{K}_I(t, t_0) \Ket{\psi_I(t_0)} \Big)
    &= \hat{H}_{1,I}(t) \Big( \hat{K}_I(t, t_0) \Ket{\psi_I(t_0)} \Big)
    \\
    i \hbar \dv{}{t}\hat{K}_I(t, t_0)
    &= \hat{H}_{1,I}(t) \hat{K}_I(t, t_0)
\end{aligned}$$

We turn this into an integral equation
by integrating both sides from $$t_0$$ to $$t$$:

$$\begin{aligned}
    i \hbar \int_{t_0}^t \dv{}{t'}K_I(t', t_0) \dd{t'}
    = \int_{t_0}^t \hat{H}_{1,I}(t') \hat{K}_I(t', t_0) \dd{t'}
\end{aligned}$$

After evaluating the left integral,
we see an expression for $$\hat{K}_I$$ as a function of $$\hat{K}_I$$ itself:

$$\begin{aligned}
     K_I(t, t_0)
    = 1 + \frac{1}{i \hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \hat{K}_I(t', t_0) \dd{t'}
\end{aligned}$$

By recursively inserting $$\hat{K}_I$$ once, we get a longer expression,
still with $$\hat{K}_I$$ on both sides:

$$\begin{aligned}
     K_I(t, t_0)
    = 1 + \frac{1}{i \hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'}
    + \frac{1}{(i \hbar)^2} \int_{t_0}^t \hat{H}_{1,I}(t') \int_{t_0}^{t'} \hat{H}_{1,I}(t'') \hat{K}_I(t'', t_0) \dd{t''} \dd{t'}
\end{aligned}$$

And so on. Note the ordering of the integrals and integrands:
upon closer inspection, we see that the $$n$$th term is
a [time-ordered product](/know/concept/time-ordered-product/) $$\mathcal{T}$$
of $$n$$ factors $$\hat{H}_{1,I}$$:

$$\begin{aligned}
    \hat{K}_I(t, t_0)
    &= 1 + \int_{t_0}^t \hat{H}_{1,I}(t_1) \dd{t_1}
    + \frac{1}{2} \int_{t_0}^{t} \int_{t_0}^{t_1} \mathcal{T} \Big\{ \hat{H}_{1,I}(t_1) \hat{H}_{1,I}(t_2) \Big\} \dd{t_1} \dd{t_2}
    + \: ...
    \\
    &= 1 + \sum_{n = 1}^\infty \frac{1}{n!} \frac{1}{(i \hbar)^n}
    \int_{t_0}^{t} \cdots \int_{t_0}^{t_n} \mathcal{T} \Big\{ \hat{H}_{1,I}(t_1) \cdots \hat{H}_{1,I}(t_n) \Big\} \dd{t_1} \cdots \dd{t_n}
    \\
    &= \sum_{n = 0}^\infty \frac{1}{n!} \frac{1}{(i \hbar)^n}
    \mathcal{T} \bigg\{ \bigg( \int_{t_0}^{t} \hat{H}_{1,I}(t') \dd{t'} \bigg)^n \bigg\}
\end{aligned}$$

This construction is occasionally called the **Dyson series**.
We recognize the well-known Taylor expansion of $$\exp(x)$$,
leading us to a final expression for $$\hat{K}_I$$:

$$\begin{aligned}
    \boxed{
        \hat{K}_I(t, t_0)
        = \mathcal{T} \bigg\{ \exp\!\bigg( \frac{1}{i \hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) \bigg\}
    }
\end{aligned}$$



## References
1.  H. Bruus, K. Flensberg,
    *Many-body quantum theory in condensed matter physics*,
    2016, Oxford.