summaryrefslogtreecommitdiff
path: root/source/know/concept/ion-sound-wave/index.md
blob: 48a727d8365c70f425688d12edb572d1ba639084 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
title: "Ion sound wave"
date: 2021-10-31
categories:
- Physics
- Plasma physics
- Plasma waves
- Perturbation
layout: "concept"
---

In a plasma, electromagnetic interactions allow
compressional longitudinal waves to propagate
at lower temperatures and pressures
than would be possible in a neutral gas.

We start from the [two-fluid model's](/know/concept/two-fluid-equations/) momentum equations,
rewriting the [electric field](/know/concept/electric-field/) $\vb{E} = - \nabla \phi$
and the pressure gradient $\nabla p = \gamma k_B T \nabla n$,
and arguing that $m_e \approx 0$ because $m_e \ll m_i$:

$$\begin{aligned}
    m_i n_i \frac{\mathrm{D} \vb{u}_i}{\mathrm{D} t}
    &= - q_i n_i \nabla \phi - \gamma_i k_B T_i \nabla n_i
    \\
    0
    &= - q_e n_e \nabla \phi - \gamma_e k_B T_e \nabla n_e
\end{aligned}$$

Note that we neglect ion-electron collisions,
and allow for separate values of $\gamma$.
We split $n_i$, $n_e$, $\vb{u}_i$ and $\phi$ into an equilibrium
(subscript $0$) and a perturbation (subscript $1$):

$$\begin{aligned}
    n_i
    = n_{i0} + n_{i1}
    \qquad
    n_e
    = n_{e0} + n_{e1}
    \qquad
    \vb{u}_i
    = \vb{u}_{i0} + \vb{u}_{i1}
    \qquad
    \phi
    = \phi_0 + \phi_1
\end{aligned}$$

Where the perturbations $n_{i1}$, $n_{e1}$, $\vb{u}_{i1}$ and $\phi_1$ are tiny,
and the equilibrium components $n_{i0}$, $n_{e0}$, $\vb{u}_{i0}$ and $\phi_0$
by definition satisfy:

$$\begin{aligned}
    \pdv{n_{i0}}{t} = 0
    \qquad
    \frac{\mathrm{D} \vb{u}_{i0}}{\mathrm{D} t} = 0
    \qquad
    \nabla n_{i0} = \nabla n_{e0} = 0
    \qquad
    \vb{u}_{i0} = 0
    \qquad
    \phi_0 = 0
\end{aligned}$$

Inserting this decomposition into the momentum equations
yields new equations.
Note that we will implicitly use $\vb{u}_{i0} = 0$
to pretend that the [material derivative](/know/concept/material-derivative/)
$\mathrm{D}/\mathrm{D} t$ is linear:

$$\begin{aligned}
    m_i (n_{i0} \!+\! n_{i1}) \frac{\mathrm{D} (\vb{u}_{i0} \!+\! \vb{u}_{i1})}{\mathrm{D} t}
    &= - q_i (n_{i0} \!+\! n_{i1}) \nabla (\phi_0 \!+\! \phi_1) - \gamma_i k_B T_i \nabla (n_{i0} \!+\! n_{i1})
    \\
    0
    &= - q_e (n_{e0} \!+\! n_{e1}) \nabla (\phi_0 \!+\! \phi_1) - \gamma_e k_B T_e \nabla (n_{e0} \!+\! n_{e1})
\end{aligned}$$

Using the defined properties of the equilibrium components
$n_{i0}$, $n_{e0}$, $\vb{u}_{i0}$ and $\phi_0$,
and neglecting all products of perturbations for being small,
this reduces to:

$$\begin{aligned}
    m_i n_{i0} \pdv{\vb{u}_{i1}}{t}
    &= - q_i n_{i0} \nabla \phi_1 - \gamma_i k_B T_i \nabla n_{i1}
    \\
    0
    &= - q_e n_{e0} \nabla \phi_1 - \gamma_e k_B T_e \nabla n_{e1}
\end{aligned}$$

Because we are interested in linear waves,
we make the following plane-wave ansatz:

$$\begin{aligned}
    n_{i1}(\vb{r}, t)
    &= n_{i1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
    \\
    n_{e1}(\vb{r}, t)
    &= n_{e1} \exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
    \\
    \vb{u}_{i1}(\vb{r}, t)
    &= \vb{u}_{i1} \exp\!(i \vb{k} \cdot \vb{r}  - i \omega t)
    \\
    \phi_1(\vb{r}, t)
    &= \phi_1 \,\,\exp\!(i \vb{k} \cdot \vb{r} - i \omega t)
\end{aligned}$$

Which we then insert into the momentum equations for the ions and electrons:

$$\begin{aligned}
    - i \omega m_i n_{i0} \vb{u}_{i1}
    &= - i \vb{k} q_i n_{i0} \phi_1 - i \vb{k} \gamma_i k_B T_i n_{i1}
    \\
    0
    &= - i \vb{k} q_e n_{e0} \phi_1 - i \vb{k} \gamma_e k_B T_e n_{e1}
\end{aligned}$$

The electron equation can easily be rearranged
to get a relation between $n_{e1}$ and $n_{e0}$:

$$\begin{aligned}
     i \vb{k} \gamma_e k_B T_e n_{e1}
     = - i \vb{k} q_e n_{e0} \phi_1
     \quad \implies \quad
     n_{e1}
     = - \frac{q_e \phi_1}{\gamma_e k_B T_e} n_{e0}
\end{aligned}$$

Due to their low mass, the electrons' heat conductivity
can be regarded as infinite compared to the ions'.
In that case, all electron gas compression is isothermal,
meaning it obeys the ideal gas law $p_e = n_e k_B T_e$, so that $\gamma_e = 1$.
Note that this yields the first-order term of a Taylor expansion
of the [Boltzmann relation](/know/concept/boltzmann-relation/).

At equilibrium, quasi-neutrality demands that $n_{i0} = n_{e0} = n_0$,
so we can rearrange the above relation to $n_0 = - k_B T_e n_{e1} / (q_e \phi_1)$,
which we insert into the ion equation to get:

$$\begin{gathered}
    i \omega m_i \frac{k_B T_e n_{e1}}{q_e \phi_1} \vb{u}_{i1}
    = - i q_i \frac{k_B T_e n_{e1}}{q_e \phi_1} \phi_1 \vb{k} - i \gamma_i k_B T_i n_{i1} \vb{k}
    \\
    \implies \qquad
    \omega m_i \frac{T_e n_{e1}}{q_e \phi_1} \vb{k} \cdot \vb{u}_{i1}
    = T_e n_{e1} |\vb{k}|^2 - \gamma_i T_i n_{i1} |\vb{k}|^2
\end{gathered}$$

Where we have taken the dot product with $\vb{k}$,
and used that $q_i / q_e = -1$.
In order to simplify this equation,
we turn to the two-fluid ion continuity relation:

$$\begin{aligned}
    0
    &= \pdv{(n_{i0} \!+\! n_{i1})}{t} + \nabla \cdot \Big( (n_{i0} \!+\! n_{i1}) (\vb{u}_{i0} \!+\! \vb{u}_{i1}) \Big)
    \approx \pdv{n_{i1}}{t} + n_{i0} \nabla \cdot \vb{u}_{i1}
\end{aligned}$$

Then we insert our plane-wave ansatz,
and substitute $n_{i0} = n_0$ as before, yielding:

$$\begin{aligned}
    0
    = - i \omega n_{i1} + i n_{i0} \vb{k} \cdot \vb{u}_{i1}
    \quad \implies \quad
    \vb{k} \cdot \vb{u}_{i1}
    = \omega \frac{n_{i1}}{n_{i0}}
    = \omega \frac{q_e n_{i1} \phi_1}{k_B T_e n_{e1}}
\end{aligned}$$

Substituting this in the ion momentum equation
leads us to a dispersion relation $\omega(\vb{k})$:

$$\begin{gathered}
    \omega^2 m_i \frac{T_e n_{e1}}{q_e \phi_1} \frac{q_e n_{i1} \phi_1}{k_B T_e n_{e1}}
    = \omega^2 m_i \frac{n_{i1}}{k_B}
    = |\vb{k}|^2 \big( T_e n_{e1} - \gamma_i T_i n_{i1} \big)
    \\
    \implies \qquad
    \omega^2
    = \frac{|\vb{k}|^2}{m_i} \Big( k_B T_e \frac{n_{e1}}{n_{i1}} - \gamma_i k_B T_i \Big)
\end{gathered}$$

Finally, we would like to find an expression for $n_{e1} / n_{i1}$.
It cannot be $1$, because then $\phi_1$ could not be nonzero,
according to [Gauss' law](/know/concept/maxwells-equations/).
Nevertheless, authors often ignore this fact,
thereby making the so-called **plasma approximation**.
We will not, and therefore turn to Gauss' law:

$$\begin{aligned}
    \varepsilon_0 \nabla \cdot \vb{E}
    = - \varepsilon_0 \nabla^2 \phi_1
    = q_i n_i - q_e n_e
    = - q_e (n_{i1} - n_{e1})
\end{aligned}$$

One final time, we insert our plane-wave ansatz,
and use our Boltzmann-like relation between $n_{e1}$ and $n_{e0}$
to substitute $\phi_1 = - k_B T_e n_{e1} / (q_e n_{e0})$:

$$\begin{gathered}
    q_e (n_{e1} - n_{i1})
    = |\vb{k}|^2 \varepsilon_0 \phi_1
    = - |\vb{k}|^2 \varepsilon_0 \frac{k_B T_e n_{e1}}{q_e n_{e0}}
    \\
    \implies \qquad
    n_{i1}
    = n_{e1} + |\vb{k}|^2 \varepsilon_0 \frac{k_B T_e n_{e1}}{q_e^2 n_{e0}}
    = n_{e1} \big( 1 + |\vb{k}|^2 \lambda_{De}^2 \big)
\end{gathered}$$

Where $\lambda_{De}$ is the electron [Debye length](/know/concept/debye-length/).
We thus reach the following dispersion relation,
which governs **ion sound waves** or **ion acoustic waves**:

$$\begin{aligned}
    \boxed{
        \omega^2
        = \frac{|\vb{k}|^2}{m_i} \bigg( \frac{k_B T_e}{1 + |\vb{k}|^2 \lambda_{De}^2} + \gamma_i k_B T_i \bigg)
    }
\end{aligned}$$

The aforementioned plasma approximation is valid if $|\vb{k}| \lambda_{De} \ll 1$,
which is often reasonable,
in which case this dispersion relation reduces to:

$$\begin{aligned}
    \omega^2
    = \frac{|\vb{k}|^2}{m_i} \bigg( k_B T_e + \gamma_i k_B T_i \bigg)
\end{aligned}$$

The phase velocity $v_s$ of these waves,
i.e. the speed of sound, is then given by:

$$\begin{aligned}
    \boxed{
        v_s
        = \frac{\omega}{k}
        = \sqrt{\frac{k_B T_e}{m_i} + \frac{\gamma_i k_B T_i}{m_i}}
    }
\end{aligned}$$

Curiously, unlike a neutral gas,
this velocity is nonzero even if $T_i = 0$,
meaning that the waves still exist then.
In fact, usually the electron temperature $T_e$ dominates $T_e \gg T_i$,
even though the main feature of these waves
is that they involve ion density fluctuations $n_{i1}$.



## References
1.  F.F. Chen,
    *Introduction to plasma physics and controlled fusion*,
    3rd edition, Springer.
2.  M. Salewski, A.H. Nielsen,
    *Plasma physics: lecture notes*,
    2021, unpublished.