summaryrefslogtreecommitdiff
path: root/source/know/concept/ito-process/index.md
blob: f192e28be9688f842d3b872c5bb0fee441b22e7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
---
title: "Itō process"
sort_title: "Ito process" # sic
date: 2021-11-06
categories:
- Mathematics
- Stochastic analysis
layout: "concept"
---

Given two [stochastic processes](/know/concept/stochastic-process/)
$$F_t$$ and $$G_t$$, consider the following random variable $$X_t$$,
where $$B_t$$ is the [Wiener process](/know/concept/wiener-process/),
i.e. Brownian motion:

$$\begin{aligned}
    X_t
    = X_0 + \int_0^t F_s \dd{s} + \int_0^t G_s \dd{B_s}
\end{aligned}$$

Where the latter is an [Itō integral](/know/concept/ito-integral/),
assuming $$G_t$$ is Itō-integrable.
We call $$X_t$$ an **Itō process** if $$F_t$$ is locally integrable,
and the initial condition $$X_0$$ is known,
i.e. $$X_0$$ is $$\mathcal{F}_0$$-measurable,
where $$\mathcal{F}_t$$ is the filtration
to which $$F_t$$, $$G_t$$ and $$B_t$$ are adapted.
The above definition of $$X_t$$ is often abbreviated as follows,
where $$X_0$$ is implicit:

$$\begin{aligned}
    \dd{X_t}
    = F_t \dd{t} + G_t \dd{B_t}
\end{aligned}$$

Typically, $$F_t$$ is referred to as the **drift** of $$X_t$$,
and $$G_t$$ as its **intensity**.
Because the Itō integral of $$G_t$$ is a
[martingale](/know/concept/martingale/),
it does not contribute to the mean of $$X_t$$:

$$\begin{aligned}
    \mathbf{E}[X_t]
    = \int_0^t \mathbf{E}[F_s] \dd{s}
\end{aligned}$$

Now, consider the following **Itō stochastic differential equation** (SDE),
where $$\xi_t = \idv{B_t}{t}$$ is white noise,
informally treated as the $$t$$-derivative of $$B_t$$:

$$\begin{aligned}
    \dv{X_t}{t}
    = f(X_t, t) + g(X_t, t) \: \xi_t
\end{aligned}$$

An Itō process $$X_t$$ is said to satisfy this equation
if $$f(X_t, t) = F_t$$ and $$g(X_t, t) = G_t$$,
in which case $$X_t$$ is also called an **Itō diffusion**.
All Itō diffusions are [Markov processes](/know/concept/markov-process/),
since only the current value of $$X_t$$ determines the future,
and $$B_t$$ is also a Markov process.


## Itō's lemma

Classically, given $$y \equiv h(x(t), t)$$,
the chain rule of differentiation states that:

$$\begin{aligned}
    \dd{y}
    = \pdv{h}{t} \dd{t} + \pdv{h}{x} \dd{x}
\end{aligned}$$

However, for a stochastic process $$Y_t \equiv h(X_t, t)$$,
where $$X_t$$ is an Itō process,
the chain rule is modified to the following,
known as **Itō's lemma**:

$$\begin{aligned}
    \boxed{
        \dd{Y_t}
        = \bigg( \pdv{h}{t} + \pdv{h}{x} F_t + \frac{1}{2} \pdvn{2}{h}{x} G_t^2 \bigg) \dd{t} + \pdv{h}{x} G_t \dd{B_t}
    }
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-lemma"/>
<label for="proof-lemma">Proof</label>
<div class="hidden" markdown="1">
<label for="proof-lemma">Proof.</label>
We start by applying the classical chain rule,
but we go to second order in $$x$$.
This is also valid classically,
but there we would neglect all higher-order infinitesimals:

$$\begin{aligned}
    \dd{Y_t}
    = \pdv{h}{t} \dd{t} + \pdv{h}{x} \dd{X_t} + \frac{1}{2} \pdvn{2}{h}{x} \dd{X_t}^2
\end{aligned}$$

But here we cannot neglect $$\dd{X_t}^2$$.
We insert the definition of an Itō process:

$$\begin{aligned}
    \dd{Y_t}
    &= \pdv{h}{t} \dd{t} + \pdv{h}{x} \Big( F_t \dd{t} + G_t \dd{B_t} \Big) + \frac{1}{2} \pdvn{2}{h}{x} \Big( F_t \dd{t} + G_t \dd{B_t} \Big)^2
    \\
    &= \pdv{h}{t} \dd{t} + \pdv{h}{x} \Big( F_t \dd{t} + G_t \dd{B_t} \Big)
    + \frac{1}{2} \pdvn{2}{h}{x} \Big( F_t^2 \dd{t}^2 + 2 F_t G_t \dd{t} \dd{B_t} + G_t^2 \dd{B_t}^2 \Big)
\end{aligned}$$

In the limit of small $$\dd{t}$$, we can neglect $$\dd{t}^2$$,
and as it turns out, $$\dd{t} \dd{B_t}$$ too:

$$\begin{aligned}
    \dd{t} \dd{B_t}
    &= (B_{t + \dd{t}} - B_t) \dd{t}
    \sim \dd{t} \mathcal{N}(0, \dd{t})
    \sim \mathcal{N}(0, \dd{t}^3)
    \longrightarrow 0
\end{aligned}$$

However, due to the scaling property of $$B_t$$,
we cannot ignore $$\dd{B_t}^2$$, which has order $$\dd{t}$$:

$$\begin{aligned}
    \dd{B_t}^2
    &= (B_{t + \dd{t}} - B_t)^2
    \sim \big( \mathcal{N}(0, \dd{t}) \big)^2
    \sim \chi^2_1(\dd{t})
    \longrightarrow \dd{t}
\end{aligned}$$

Where $$\chi_1^2(\dd{t})$$ is the generalized chi-squared distribution
with one term of variance $$\dd{t}$$.
</div>
</div>

The most important application of Itō's lemma
is to perform coordinate transformations,
to make the solution of a given Itō SDE easier.


## Coordinate transformations

The simplest coordinate transformation is a scaling of the time axis.
Defining $$s \equiv \alpha t$$, the goal is to keep the Itō process.
We know how to scale $$B_t$$, be setting $$W_s \equiv \sqrt{\alpha} B_{s / \alpha}$$.
Let $$Y_s \equiv X_t$$ be the new variable on the rescaled axis, then:

$$\begin{aligned}
    \dd{Y_s}
    = \dd{X_t}
    &= f(X_t) \dd{t} + g(X_t) \dd{B_t}
    \\
    &= \frac{1}{\alpha} f(Y_s) \dd{s} + \frac{1}{\sqrt{\alpha}} g(Y_s) \dd{W_s}
\end{aligned}$$

$$W_s$$ is a valid Wiener process,
and the other changes are small,
so this is still an Itō process.

To solve SDEs analytically, it is usually best
to have additive noise, i.e. $$g = 1$$.
This can be achieved using the **Lamperti transform**:
define $$Y_t \equiv h(X_t)$$, where $$h$$ is given by:

$$\begin{aligned}
    \boxed{
        h(x)
        = \int_{x_0}^x \frac{1}{g(y)} \dd{y}
    }
\end{aligned}$$

Then, using Itō's lemma, it is straightforward
to show that the intensity becomes $$1$$.
Note that the lower integration limit $$x_0$$ does not enter:

$$\begin{aligned}
    \dd{Y_t}
    &= \bigg( f(X_t) \: h'(X_t) + \frac{1}{2} g^2(X_t) \: h''(X_t) \bigg) \dd{t} + g(X_t) \: h'(X_t) \dd{B_t}
    \\
    &= \bigg( \frac{f(X_t)}{g(X_t)} - \frac{1}{2} g^2(X_t) \frac{g'(X_t)}{g^2(X_t)} \bigg) \dd{t} + \frac{g(X_t)}{g(X_t)} \dd{B_t}
    \\
    &= \bigg( \frac{f(X_t)}{g(X_t)} - \frac{1}{2} g'(X_t) \bigg) \dd{t} + \dd{B_t}
\end{aligned}$$

Similarly, we can eliminate the drift $$f = 0$$,
thereby making the Itō process a martingale.
This is done by defining $$Y_t \equiv h(X_t)$$, with $$h(x)$$ given by:

$$\begin{aligned}
    \boxed{
        h(x)
        = \int_{x_0}^x \exp\!\bigg( \!-\!\! \int_{x_1}^y \frac{2 f(z)}{g^2(z)} \dd{z} \bigg) \dd{y}
    }
\end{aligned}$$

The goal is to make the parenthesized first term (see above)
of Itō's lemma disappear, which this $$h(x)$$ does indeed do.
Note that $$x_0$$ and $$x_1$$ do not enter:

$$\begin{aligned}
    0
    &= f(x) \: h'(x) + \frac{1}{2} g^2(x) \: h''(x)
    \\
    &= \Big( f(x) - \frac{1}{2} g^2(x) \frac{2 f(x)}{g^2(x)} \Big) \exp\!\bigg( \!-\!\! \int_{x_1}^x \frac{2 f(y)}{g^2(y)} \dd{y} \bigg)
\end{aligned}$$


## Existence and uniqueness

It is worth knowing under what condition a solution to a given SDE exists,
in the sense that it is finite on the entire time axis.
Suppose the drift $$f$$ and intensity $$g$$ satisfy these inequalities,
for some known constant $$K$$ and for all $$x$$:

$$\begin{aligned}
    x f(x) \le K (1 + x^2)
    \qquad \quad
    g^2(x) \le K (1 + x^2)
\end{aligned}$$

When this is satisfied, we can find the following upper bound
on an Itō process $$X_t$$,
which clearly implies that $$X_t$$ is finite for all $$t$$:

$$\begin{aligned}
    \boxed{
        \mathbf{E}[X_t^2]
        \le \big(X_0^2 + 3 K t\big) \exp\!\big(3 K t\big)
    }
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-existence"/>
<label for="proof-existence">Proof</label>
<div class="hidden" markdown="1">
<label for="proof-existence">Proof.</label>
If we define $$Y_t \equiv X_t^2$$,
then Itō's lemma tells us that the following holds:

$$\begin{aligned}
    \dd{Y_t}
    = \big( 2 X_t \: f(X_t) + g^2(X_t) \big) \dd{t} + 2 X_t \: g(X_t) \dd{B_t}
\end{aligned}$$

Integrating and taking the expectation value
removes the Wiener term, leaving:

$$\begin{aligned}
    \mathbf{E}[Y_t]
    = Y_0 + \mathbf{E}\! \int_0^t 2 X_s f(X_s) + g^2(X_s) \dd{s}
\end{aligned}$$

Given that $$K (1 \!+\! x^2)$$ is an upper bound of $$x f(x)$$ and $$g^2(x)$$,
we get an inequality:

$$\begin{aligned}
    \mathbf{E}[Y_t]
    &\le Y_0 + \mathbf{E}\! \int_0^t 2 K (1 \!+\! X_s^2) + K (1 \!+\! X_s^2) \dd{s}
    \\
    &\le Y_0 + \int_0^t 3 K (1 + \mathbf{E}[Y_s]) \dd{s}
    \\
    &\le Y_0 + 3 K t + \int_0^t 3 K \big( \mathbf{E}[Y_s] \big) \dd{s}
\end{aligned}$$

We then apply the
[Grönwall-Bellman inequality](/know/concept/gronwall-bellman-inequality/),
noting that $$(Y_0 \!+\! 3 K t)$$ does not decrease with time, leading us to:

$$\begin{aligned}
    \mathbf{E}[Y_t]
    &\le (Y_0 + 3 K t) \exp\!\bigg( \int_0^t 3 K \dd{s} \bigg)
    \\
    &\le (Y_0 + 3 K t) \exp\!\big(3 K t\big)
\end{aligned}$$

</div>
</div>

If a solution exists, it is also worth knowing whether it is unique.
Suppose that $$f$$ and $$g$$ satisfy the following inequalities,
for some constant $$K$$ and for all $$x$$ and $$y$$:

$$\begin{aligned}
    \big| f(x) - f(y) \big| \le K \big| x - y \big|
    \qquad \quad
    \big| g(x) - g(y) \big| \le K \big| x - y \big|
\end{aligned}$$

Let $$X_t$$ and $$Y_t$$ both be solutions to a given SDE,
but the initial conditions need not be the same,
such that the difference is initially $$X_0 \!-\! Y_0$$.
Then the difference $$X_t \!-\! Y_t$$ is bounded by:

$$\begin{aligned}
    \boxed{
        \mathbf{E}\big[ (X_t - Y_t)^2 \big]
        \le (X_0 - Y_0)^2 \exp\!\Big( \big(2 K \!+\!  K^2 \big) t \Big)
    }
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-uniqueness"/>
<label for="proof-uniqueness">Proof</label>
<div class="hidden" markdown="1">
<label for="proof-uniqueness">Proof.</label>
We define $$D_t \equiv X_t \!-\! Y_t$$ and $$Z_t \equiv D_t^2 \ge 0$$,
together with $$F_t \equiv f(X_t) \!-\! f(Y_t)$$ and $$G_t \equiv g(X_t) \!-\! g(Y_t)$$,
such that Itō's lemma states:

$$\begin{aligned}
    \dd{Z_t}
    = \big( 2 D_t F_t + G_t^2 \big) \dd{t} + 2 D_t G_t \dd{B_t}
\end{aligned}$$

Integrating and taking the expectation value
removes the Wiener term, leaving:

$$\begin{aligned}
    \mathbf{E}[Z_t]
    = Z_0 + \mathbf{E}\! \int_0^t 2 D_s F_s + G_s^2 \dd{s}
\end{aligned}$$

The *Cauchy-Schwarz inequality* states that $$|D_s F_s| \le |D_s| |F_s|$$,
and then the given fact that $$F_s$$ and $$G_s$$ satisfy
$$|F_s| \le K |D_s|$$ and $$|G_s| \le K |D_s|$$ gives:

$$\begin{aligned}
    \mathbf{E}[Z_t]
    &\le Z_0 + \mathbf{E}\! \int_0^t 2 K D_s^2 + K^2 D_s^2 \dd{s}
    \\
    &\le Z_0 + \int_0^t (2 K \!+\! K^2) \: \mathbf{E}[Z_s] \dd{s}
\end{aligned}$$

Where we have implicitly used that $$D_s F_s = |D_s F_s|$$
because $$Z_t$$ is positive for all $$G_s^2$$,
and that $$|D_s|^2 = D_s^2$$ because $$D_s$$ is real.
We then apply the
[Grönwall-Bellman inequality](/know/concept/gronwall-bellman-inequality/),
recognizing that $$Z_0$$ does not decrease with time (since it is constant):

$$\begin{aligned}
    \mathbf{E}[Z_t]
    &\le Z_0 \exp\!\bigg( \int_0^t 2 K \!+\! K^2 \dd{s} \bigg)
    \\
    &\le Z_0 \exp\!\Big( \big( 2 K \!+\! K^2 \big) t \Big)
\end{aligned}$$

</div>
</div>

Using these properties, it can then be shown
that if all of the above conditions are satisfied,
then the SDE has a unique solution,
which is $$\mathcal{F}_t$$-adapted, continuous, and exists for all times.



## References
1.  U.H. Thygesen,
    *Lecture notes on diffusions and stochastic differential equations*,
    2021, Polyteknisk Kompendie.