1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
---
title: "Kolmogorov equations"
sort_title: "Kolmogorov equations"
date: 2021-11-14
categories:
- Mathematics
- Statistics
- Stochastic analysis
layout: "concept"
---
Consider the following general [Itō diffusion](/know/concept/ito-calculus/)
$$X_t \in \mathbb{R}$$, which is assumed to satisfy
the conditions for unique existence on the entire time axis:
$$\begin{aligned}
\dd{X}_t
= f(X_t, t) \dd{t} + g(X_t, t) \dd{B_t}
\end{aligned}$$
Let $$\mathcal{F}_t$$ be the filtration to which $$X_t$$ is adapted,
then we define $$Y_s$$ as shown below,
namely as the [conditional expectation](/know/concept/conditional-expectation/)
of $$h(X_t)$$, for an arbitrary bounded function $$h(x)$$,
given the information $$\mathcal{F}_s$$ available at time $$s \le t$$.
Because $$X_t$$ is a [Markov process](/know/concept/markov-process/),
$$Y_s$$ must be $$X_s$$-measurable,
so it is a function $$k$$ of $$X_s$$ and $$s$$:
$$\begin{aligned}
Y_s
\equiv \mathbf{E}[h(X_t) | \mathcal{F}_s]
= \mathbf{E}[h(X_t) | X_s]
= k(X_s, s)
\end{aligned}$$
Consequently, we can apply Itō's lemma to find $$\dd{Y_s}$$
in terms of $$k$$, $$f$$ and $$g$$:
$$\begin{aligned}
\dd{Y_s}
&= \bigg( \pdv{k}{s} + \pdv{k}{x} f + \frac{1}{2} \pdvn{2}{k}{x} g^2 \bigg) \dd{s} + \pdv{k}{x} g \dd{B_s}
\\
&= \bigg( \pdv{k}{s} + \hat{L} k \bigg) \dd{s} + \pdv{k}{x} g \dd{B_s}
\end{aligned}$$
Where we have defined the linear operator $$\hat{L}$$
to have the following action on $$k$$:
$$\begin{aligned}
\hat{L} k
\equiv \pdv{k}{x} f + \frac{1}{2} \pdvn{2}{k}{x} g^2
\end{aligned}$$
At this point, we need to realize that $$Y_s$$ is
a [martingale](/know/concept/martingale/) with respect to $$\mathcal{F}_s$$,
since $$Y_s$$ is $$\mathcal{F}_s$$-adapted and finite,
and it satisfies the martingale property,
for $$r \le s \le t$$:
$$\begin{aligned}
\mathbf{E}[Y_s | \mathcal{F}_r]
= \mathbf{E}\Big[ \mathbf{E}[h(X_t) | \mathcal{F}_s] \Big| \mathcal{F}_r \Big]
= \mathbf{E}\big[ h(X_t) \big| \mathcal{F}_r \big]
= Y_r
\end{aligned}$$
Where we used the tower property of conditional expectations,
because $$\mathcal{F}_r \subset \mathcal{F}_s$$.
However, an Itō diffusion can only be a martingale
if its drift term (the one containing $$\dd{s}$$) vanishes,
so, looking at $$\dd{Y_s}$$, we must demand that:
$$\begin{aligned}
\pdv{k}{s} + \hat{L} k
= 0
\end{aligned}$$
Because $$k(X_s, s)$$ is a Markov process,
we can write it with a transition density $$p(s, X_s; t, X_t)$$,
where in this case $$s$$ and $$X_s$$ are given initial conditions,
$$t$$ is a parameter, and the terminal state $$X_t$$ is a random variable.
We thus have:
$$\begin{aligned}
k(x, s)
= \int_{-\infty}^\infty p(s, x; t, y) \: h(y) \dd{y}
\end{aligned}$$
We insert this into the equation that we just derived for $$k$$, yielding:
$$\begin{aligned}
0
= \int_{-\infty}^\infty \!\! \Big( \pdv{}{s}p(s, x; t, y) + \hat{L} p(s, x; t, y) \Big) h(y) \dd{y}
\end{aligned}$$
Because $$h$$ is arbitrary, and this must be satisfied for all $$h$$,
the transition density $$p$$ fulfills:
$$\begin{aligned}
0
= \pdv{}{s}p(s, x; t, y) + \hat{L} p(s, x; t, y)
\end{aligned}$$
Here, $$t$$ is a known parameter and $$y$$ is a "known" integration variable,
leaving only $$s$$ and $$x$$ as free variables for us to choose.
We therefore define the **likelihood function** $$\psi(s, x)$$,
which gives the likelihood of an initial condition $$(s, x)$$
given that the terminal condition is $$(t, y)$$:
$$\begin{aligned}
\boxed{
\psi(s, x)
\equiv p(s, x; t, y)
}
\end{aligned}$$
And from the above derivation,
we conclude that $$\psi$$ satisfies the following PDE,
known as the **backward Kolmogorov equation**:
$$\begin{aligned}
\boxed{
- \pdv{\psi}{s}
= \hat{L} \psi
= f \pdv{\psi}{x} + \frac{1}{2} g^2 \pdvn{2}{\psi}{x}
}
\end{aligned}$$
Moving on, we can define the traditional
**probability density function** $$\phi(t, y)$$ from the transition density $$p$$,
by fixing the initial $$(s, x)$$
and leaving the terminal $$(t, y)$$ free:
$$\begin{aligned}
\boxed{
\phi(t, y)
\equiv p(s, x; t, y)
}
\end{aligned}$$
With this in mind, for $$(s, x) = (0, X_0)$$,
the unconditional expectation $$\mathbf{E}[Y_t]$$
(i.e. the conditional expectation without information)
will be constant in time, because $$Y_t$$ is a martingale:
$$\begin{aligned}
\mathbf{E}[Y_t]
= \mathbf{E}[k(X_t, t)]
= \int_{-\infty}^\infty k(y, t) \: \phi(t, y) \dd{y}
= \Inprod{k}{\phi}
= \mathrm{const}
\end{aligned}$$
This integral has the form of an inner product,
so we switch to [Dirac notation](/know/concept/dirac-notation/).
We differentiate with respect to $$t$$,
and use the backward equation $$\ipdv{k}{t} + \hat{L} k = 0$$:
$$\begin{aligned}
0
= \pdv{}{t}\Inprod{k}{\phi}
= \Inprod{k}{\pdv{\phi}{t}} + \Inprod{\pdv{k}{t}}{\phi}
= \Inprod{k}{\pdv{\phi}{t}} - \Inprod{\hat{L} k}{\phi}
= \Inprod{k}{\pdv{\phi}{t} - \hat{L}{}^\dagger \phi}
\end{aligned}$$
Where $$\hat{L}{}^\dagger$$ is by definition the adjoint operator of $$\hat{L}$$,
which we calculate using partial integration,
where all boundary terms vanish thanks to the *existence* of $$X_t$$;
in other words, $$X_t$$ cannot reach infinity at any finite $$t$$,
so the integrand must decay to zero for $$|y| \to \infty$$:
$$\begin{aligned}
\Inprod{\hat{L} k}{\phi}
&= \int_{-\infty}^\infty \pdv{k}{y} f \phi + \frac{1}{2} \pdvn{2}{k}{y} g^2 \phi \dd{y}
\\
&= \bigg[ k f \phi + \frac{1}{2} \pdv{k}{y} g^2 \phi \bigg]_{-\infty}^\infty
- \int_{-\infty}^\infty k \pdv{}{y}(f \phi) + \frac{1}{2} \pdv{k}{y} \pdv{}{y}(g^2 \phi) \dd{y}
\\
&= \bigg[ -\frac{1}{2} k g^2 \phi \bigg]_{-\infty}^\infty
+ \int_{-\infty}^\infty - k \pdv{}{y}(f \phi) + \frac{1}{2} k \pdvn{2}{}{y}(g^2 \phi) \dd{y}
\\
&= \int_{-\infty}^\infty k \: \big( \hat{L}{}^\dagger \phi \big) \dd{y}
= \Inprod{k}{\hat{L}{}^\dagger \phi}
\end{aligned}$$
Since $$k$$ is arbitrary, and $$\ipdv{\Inprod{k}{\phi}}{t} = 0$$ for all $$k$$,
we thus arrive at the **forward Kolmogorov equation**,
describing the evolution of the probability density $$\phi(t, y)$$:
$$\begin{aligned}
\boxed{
\pdv{\phi}{t}
= \hat{L}{}^\dagger \phi
= - \pdv{}{y}(f \phi) + \frac{1}{2} \pdvn{2}{}{y}(g^2 \phi)
}
\end{aligned}$$
This can be rewritten in a way
that highlights the connection between Itō diffusions and physical diffusion,
if we define the **diffusivity** $$D$$, **advection** $$u$$, and **probability flux** $$J$$:
$$\begin{aligned}
D
\equiv \frac{1}{2} g^2
\qquad \quad
u
= f - \pdv{D}{x}
\qquad \quad
J
\equiv u \phi - D \pdv{\phi}{x}
\end{aligned}$$
Such that the forward Kolmogorov equation takes the following **conservative form**,
so called because it looks like a physical continuity equation:
$$\begin{aligned}
\boxed{
\pdv{\phi}{t}
= - \pdv{J}{x}
= - \pdv{}{x}\Big( u \phi - D \pdv{\phi}{x} \Big)
}
\end{aligned}$$
Note that if $$u = 0$$, then this reduces to
[Fick's second law](/know/concept/ficks-laws/).
The backward Kolmogorov equation can also be rewritten analogously,
although it is less noteworthy:
$$\begin{aligned}
\boxed{
- \pdv{\psi}{t}
= u \pdv{\psi}{x} + \pdv{}{x}\Big( D \pdv{\psi}{x} \Big)
}
\end{aligned}$$
Notice that the diffusivity term looks the same
in both the forward and backward equations;
we say that diffusion is self-adjoint.
## References
1. U.H. Thygesen,
*Lecture notes on diffusions and stochastic differential equations*,
2021, Polyteknisk Kompendie.
|