1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
---
title: "Kramers-Kronig relations"
sort_title: "Kramers-Kronig relations"
date: 2021-02-25
categories:
- Mathematics
- Complex analysis
- Physics
- Optics
layout: "concept"
---
Let $$\chi(t)$$ be the response function of a system
to an external impulse $$f(t)$$, which starts at $$t = 0$$.
Assuming initial equilibrium, the principle of causality
states that there is no response before the impulse,
so $$\chi(t) = 0$$ for $$t < 0$$.
To enforce this, we demand that $$\chi(t)$$ satisfies a **causality test**,
where $$\Theta(t)$$ is the [Heaviside step function](/know/concept/heaviside-step-function/):
$$\begin{aligned}
\chi(t)
= \chi(t) \: \Theta(t)
\end{aligned}$$
If we take the [Fourier transform](/know/concept/fourier-transform/) (FT)
$$\chi(t) \!\to\! \tilde{\chi}(\omega)$$ of this equation,
the right-hand side becomes a convolution in the frequency domain
thanks to the [convolution theorem](/know/concept/convolution-theorem/),
where $$A$$, $$B$$ and $$s$$ are constants determined by
how we choose to define our FT:
$$\begin{aligned}
\tilde{\chi}(\omega)
&= (\tilde{\chi} * \tilde{\Theta})(\omega)
\\
&= B \int_{-\infty}^\infty \tilde{\chi}(\omega') \: \tilde{\Theta}(\omega - \omega') \dd{\omega'}
\end{aligned}$$
We look up the full expression for $$\tilde{\Theta}(\omega)$$,
which involves the signum function $$\mathrm{sgn}(t)$$,
the [Dirac delta function](/know/concept/dirac-delta-function/) $$\delta$$,
and the [Cauchy principal value](/know/concept/cauchy-principal-value/) $$\pv{}$$.
Inserting that, we arrive at:
$$\begin{aligned}
\tilde{\chi}(\omega)
&= \frac{A B}{|s|} \pv{\int_{-\infty}^\infty \tilde{\chi}(\omega')
\bigg( \pi \delta(\omega - \omega') + i \frac{\mathrm{sgn}(s)}{\omega - \omega'} \bigg) \dd{\omega'}}
\\
&= \bigg( \frac{2}{2} \frac{\pi A B}{|s|} \bigg) \tilde{\chi}(\omega)
+ i \: \mathrm{sgn}(s) \bigg( \frac{2 \pi}{2 \pi} \frac{A B}{|s|} \bigg)
\pv{\int_{-\infty}^\infty \frac{\tilde{\chi}(\omega')}{\omega - \omega'} \dd{\omega'}}
\end{aligned}$$
From the definition of the FT we know that
$$2 \pi A B / |s| = 1$$, so this reduces to:
$$\begin{aligned}
\tilde{\chi}(\omega)
&= \frac{1}{2} \tilde{\chi}(\omega)
+ i \: \mathrm{sgn}(s) \frac{1}{2 \pi} \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}(\omega')}{\omega - \omega'} \dd{\omega'}}
\end{aligned}$$
We rearrange this equation a bit to get the final version of the causality test:
$$\begin{aligned}
\boxed{
\tilde{\chi}(\omega)
= i \: \mathrm{sgn}(s) \frac{1}{\pi}
\pv{\int_{-\infty}^\infty \frac{\tilde{\chi}(\omega')}{\omega - \omega'} \dd{\omega'}}
}
\end{aligned}$$
Next, we split $$\tilde{\chi}(\omega)$$
into its real and imaginary parts,
i.e. $$\tilde{\chi}(\omega) = \tilde{\chi}_r(\omega) + i \tilde{\chi}_i(\omega)$$:
$$\begin{aligned}
\tilde{\chi}_r(\omega) + i \tilde{\chi}_i(\omega)
= i \: \mathrm{sgn}(s) \frac{1}{\pi} \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}_r(\omega')}{\omega - \omega'} \dd{\omega'}}
- \mathrm{sgn}(s) \frac{1}{\pi} \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}_i(\omega')}{\omega - \omega'} \dd{\omega'}}
\end{aligned}$$
This equation can likewise be split into real and imaginary parts,
leading to the **Kramers-Kronig relations**,
which enable us to reconstruct $$\tilde{\chi}_r(\omega)$$
from $$\tilde{\chi}_i(\omega)$$ and vice versa:
$$\begin{aligned}
\boxed{
\begin{aligned}
\tilde{\chi}_r(\omega)
&= - \mathrm{sgn}(s) \frac{1}{\pi} \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}_i(\omega')}{\omega - \omega'} \dd{\omega'}}
\\
\tilde{\chi}_i(\omega)
&= \mathrm{sgn}(s) \frac{1}{\pi} \pv{\int_{-\infty}^\infty \frac{\tilde{\chi}_r(\omega')}{\omega - \omega'} \dd{\omega'}}
\end{aligned}
}
\end{aligned}$$
The sign of these expressions deserves special attention:
it depends on an author's choice of FT definition via $$\mathrm{sgn}(s)$$,
and, to make matters even more confusing,
many also choose to use the opposite sign in the denominator,
i.e. they write $$\omega' - \omega$$ instead of $$\omega - \omega'$$.
In the special case where $$\chi(t)$$ is real,
we can take advantage of the property that
the FT of a real function always satisfies
$$\tilde{\chi}(-\omega) = \tilde{\chi}^*(\omega)$$.
Here, this means that $$\tilde{\chi}_r(\omega)$$ is even
and $$\tilde{\chi}_i(\omega)$$ is odd.
To use this fact, we simultaneously
multiply and divide the integrands by $$\omega + \omega'$$:
$$\begin{aligned}
\tilde{\chi}_r(\omega)
&= - \mathrm{sgn}(s) \frac{1}{\pi}
\bigg( \!\pv{\int_{-\infty}^\infty \frac{\omega \tilde{\chi}_i(\omega')}{\omega^2 - {\omega'}^2} \dd{\omega'}}
+ \pv{\int_{-\infty}^\infty \frac{\omega' \tilde{\chi}_i(\omega')}{\omega^2 - {\omega'}^2} \dd{\omega'}} \bigg)
\\
\tilde{\chi}_i(\omega)
&= \mathrm{sgn}(s) \frac{1}{\pi}
\bigg( \!\pv{\int_{-\infty}^\infty \frac{\omega \tilde{\chi}_r(\omega')}{\omega^2 - {\omega'}^2} \dd{\omega'}}
+ \pv{\int_{-\infty}^\infty \frac{\omega' \tilde{\chi}_r(\omega')}{\omega^2 - {\omega'}^2} \dd{\omega'}} \bigg)
\end{aligned}$$
In $$\tilde{\chi}_r(\omega)$$'s equation, the first integrand is odd,
so the integral's value is zero.
Similarly, for $$\tilde{\chi}_i(\omega)$$, the second integrand is odd, so we drop it too.
We thus arrive at the following common variant of the Kramers-Kronig relations,
only valid for real $$\chi(t)$$:
$$\begin{aligned}
\boxed{
\begin{aligned}
\tilde{\chi}_r(\omega)
&= - \mathrm{sgn}(s) \frac{2}{\pi}
\pv{\int_0^\infty \frac{\omega' \tilde{\chi}_i(\omega')}{\omega^2 - {\omega'}^2} \dd{\omega'}}
\\
\tilde{\chi}_i(\omega)
&= \mathrm{sgn}(s) \frac{2}{\pi}
\pv{\int_0^\infty \frac{\omega \tilde{\chi}_r(\omega')}{\omega^2 - {\omega'}^2} \dd{\omega'}}
\end{aligned}
}
\end{aligned}$$
Note that we have modified the integration limits
using the fact that the integrands are even,
leading to an extra factor of $$2$$.
## References
1. M. Wubs,
*Optical properties of solids: Kramers-Kronig relations*, 2013,
unpublished.
|