1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
---
title: "Lehmann representation"
sort_title: "Lehmann representation"
date: 2021-11-03
categories:
- Physics
- Quantum mechanics
layout: "concept"
---
In many-body quantum theory, the **Lehmann representation**
is an alternative way to write the [Green's functions](/know/concept/greens-functions/),
obtained by expanding in the many-particle eigenstates
under the assumption of a time-independent Hamiltonian $$\hat{H}$$.
First, we write out the greater Green's function $$G_{\nu \nu'}^>(t, t')$$,
and then expand its expected value $$\Expval{}$$ (at thermodynamic equilibrium)
into a sum of many-particle basis states $$\Ket{n}$$:
$$\begin{aligned}
G_{\nu \nu'}^>(t, t')
= - \frac{i}{\hbar} \Expval{\hat{c}_\nu(t) \hat{c}_{\nu'}^\dagger(t')}
&= - \frac{i}{\hbar Z} \sum_{n} \Matrixel{n}{\hat{c}_\nu(t) \hat{c}_{\nu'}^\dagger(t') e^{-\beta \hat{H}}}{n}
\end{aligned}$$
Where $$\beta = 1 / (k_B T)$$, and $$Z$$ is the grand partition function
(see [grand canonical ensemble](/know/concept/grand-canonical-ensemble/));
the operator $$e^{\beta \hat{H}}$$ gives the weight of each term at equilibrium.
Since $$\Ket{n}$$ is an eigenstate of $$\hat{H}$$ with energy $$E_n$$,
this gives us a factor of $$e^{\beta E_n}$$.
Furthermore, we are in the [Heisenberg picture](/know/concept/heisenberg-picture/),
so we write out the time-dependence of $$\hat{c}_\nu$$ and $$\hat{c}_{\nu'}^\dagger$$:
$$\begin{aligned}
G_{\nu \nu'}^>(t, t')
&= - \frac{i}{\hbar Z} \sum_{n} e^{-\beta E_n} \Matrixel{n}{e^{i \hat{H} t / \hbar} \hat{c}_\nu e^{- i \hat{H} t / \hbar}
e^{i \hat{H} t' / \hbar} \hat{c}_{\nu'}^\dagger e^{- i \hat{H} t' / \hbar}}{n}
\\
&= - \frac{i}{\hbar Z} \sum_{n} e^{-\beta E_n}
\Matrixel{n}{e^{i \hat{H} (t - t') / \hbar} \hat{c}_\nu e^{- i \hat{H} (t - t') / \hbar} \hat{c}_{\nu'}^\dagger}{n}
\end{aligned}$$
Where we used that the trace $$\Tr(x) = \sum_{n} \matrixel{n}{x}{n}$$
is invariant under cyclic permutations of $$x$$.
The $$\Ket{n}$$ form a basis of eigenstates of $$\hat{H}$$,
so we insert an identity operator $$\sum_{n'} \Ket{n'} \Bra{n'}$$:
$$\begin{aligned}
G_{\nu \nu'}^>(t - t')
&= - \frac{i}{\hbar Z} \sum_{n n'} e^{- \beta E_n}
\Matrixel{n}{e^{i \hat{H} (t - t') / \hbar} \hat{c}_\nu e^{- i \hat{H} (t - t') / \hbar}}{n'} \Matrixel{n'}{\hat{c}_{\nu'}^\dagger}{n}
\\
&= - \frac{i}{\hbar Z} \sum_{n n'} e^{-\beta E_n}
\matrixel{n}{\hat{c}_\nu}{n'} \matrixel{n'}{\hat{c}_{\nu'}^\dagger}{n} e^{i (E_n - E_{n'}) (t - t') / \hbar}
\end{aligned}$$
Note that $$G_{\nu \nu'}^>$$ now only depends on the time difference $$t - t'$$,
because $$\hat{H}$$ is time-independent.
Next, we take the [Fourier transform](/know/concept/fourier-transform/)
$$t \to \omega$$ (with $$t' = 0$$):
$$\begin{aligned}
G_{\nu \nu'}^>(\omega)
&= - \frac{i}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{c}_\nu}{n'} \matrixel{n'}{\hat{c}_{\nu'}^\dagger}{n}
\int_{-\infty}^\infty e^{i (E_n - E_{n'}) t / \hbar} \: e^{i \omega t} \dd{t}
\end{aligned}$$
Here, we recognize the integral
as a [Dirac delta function](/know/concept/dirac-delta-function/) $$\delta$$,
thereby introducing a factor of $$2 \pi$$,
and arriving at the Lehmann representation of $$G_{\nu \nu'}^>$$:
$$\begin{aligned}
\boxed{
G_{\nu \nu'}^>(\omega)
= - \frac{2 \pi i}{Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{c}_\nu}{n'} \matrixel{n'}{\hat{c}_{\nu'}^\dagger}{n}
\: \delta(E_n - E_{n'} + \hbar \omega)
}
\end{aligned}$$
We now go through the same process for the lesser Green's function $$G_{\nu \nu'}^<(t, t')$$:
$$\begin{aligned}
G_{\nu \nu'}^<(t - t')
&= \mp \frac{i}{\hbar Z} \sum_{n} \matrixel{n}{\hat{c}_{\nu'}^\dagger(t') \hat{c}_\nu(t) e^{-\beta \hat{H}}}{n}
\\
&= \mp \frac{i}{\hbar Z} e^{-\beta E_n} \sum_{n n'} \matrixel{n}{\hat{c}_{\nu'}^\dagger}{n'} \matrixel{n'}{\hat{c}_\nu}{n}
e^{i (E_{n'} - E_n) (t - t') / \hbar}
\end{aligned}$$
Where $$-$$ is for bosons, and $$+$$ for fermions.
Fourier transforming yields the following:
$$\begin{aligned}
G_{\nu \nu'}^<(\omega)
&= \mp \frac{2 \pi i}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{c}_{\nu'}^\dagger}{n'} \matrixel{n'}{\hat{c}_\nu}{n}
\: \delta(E_{n'} - E_n + \hbar \omega)
\end{aligned}$$
We swap $$n$$ and $$n'$$, leading to the following
Lehmann representation of $$G_{\nu \nu'}^<$$:
$$\begin{aligned}
\boxed{
G_{\nu \nu'}^<(\omega)
= \mp \frac{2 \pi i}{Z} \sum_{n n'} e^{-\beta E_{n'}} \matrixel{n}{\hat{c}_\nu}{n'} \matrixel{n'}{\hat{c}_{\nu'}^\dagger}{n}
\: \delta(E_n - E_{n'} + \hbar \omega)
}
\end{aligned}$$
Due to the delta function $$\delta$$,
each term is only nonzero for $$E_n' = E_n + \hbar \omega$$,
so we write:
$$\begin{aligned}
G_{\nu \nu'}^<(\omega)
= \mp \frac{2 \pi i}{\hbar Z} \sum_{n n'} e^{-\beta (E_n + \hbar \omega)}
\matrixel{n}{\hat{c}_\nu}{n'} \matrixel{n'}{\hat{c}_{\nu'}^\dagger}{n} \: \delta(E_n - E_{n'} + \hbar \omega)
\end{aligned}$$
Therefore, we arrive at the following useful relation
between $$G_{\nu \nu'}^<$$ and $$G_{\nu \nu'}^>$$:
$$\begin{aligned}
\boxed{
G_{\nu \nu'}^<(\omega)
= \pm e^{-\beta \hbar \omega} G_{\nu \nu'}^>(\omega)
}
\end{aligned}$$
Moving on, let us do the same for
the retarded Green's function $$G_{\nu \nu'}^R(t, t')$$, given by:
$$\begin{aligned}
G_{\nu \nu'}^R(t \!-\! t')
&= \Theta(t \!-\! t') \Big( G_{\nu \nu'}^>(t - t') - G_{\nu \nu'}^<(t - t') \Big)
\\
&= - \frac{i}{\hbar Z} \Theta(t \!-\! t') \sum_{n n'}
\matrixel{n}{\hat{c}_\nu}{n'} \matrixel{n'}{\hat{c}_{\nu'}^\dagger}{n}
\Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) e^{i (E_n - E_{n'}) (t - t') / \hbar}
\end{aligned}$$
We take the Fourier transform, but to ensure convergence,
we must introduce an infinitesimal positive $$\eta \to 0^+$$ to the exponent
(and eventually take the limit):
$$\begin{aligned}
G_{\nu \nu'}^R(\omega)
&= - \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big) \int_{-\infty}^\infty \Theta(t) e^{i (E_n - E_{n'}) t / \hbar} e^{i (\omega + i \eta) t} \dd{t}
\\
&= - \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big) \int_0^\infty e^{i (E_n - E_{n'}) t / \hbar} e^{i (\omega + i \eta) t} \dd{t}
\\
&= - \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big)
\bigg[ \frac{\hbar e^{i (\hbar \omega + E_n - E_{n'}) t / \hbar} e^{- \eta t}}{i (\hbar \omega + E_n - E_{n'}) - \hbar \eta} \bigg]_0^\infty
\end{aligned}$$
Leading us to the following Lehmann representation
of the retarded Green's function $$G_{\nu \nu'}^R$$:
$$\begin{aligned}
\boxed{
G_{\nu \nu'}^R(\omega)
= \frac{1}{Z} \sum_{n n'}
\frac{\matrixel{n}{\hat{c}_\nu}{n'} \matrixel{n'}{\hat{c}_{\nu'}^\dagger}{n}}{\hbar (\omega + i \eta) + E_n - E_{n'}}
\Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big)
}
\end{aligned}$$
Finally, we go through the same steps for the advanced Green's function $$G_{\nu \nu'}^A(t, t')$$:
$$\begin{aligned}
G_{\nu \nu'}^A(t \!-\! t')
&= \Theta(t' \!-\! t) \Big( G_{\nu \nu'}^<(t - t') - G_{\nu \nu'}^>(t - t') \Big)
\\
&= \frac{i}{\hbar Z} \Theta(t' \!-\! t) \sum_{n n'}
\matrixel{n}{\hat{c}_\nu}{n'} \matrixel{n'}{\hat{c}_{\nu'}^\dagger}{n}
\Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) e^{i (E_n - E_{n'}) (t - t') / \hbar}
\end{aligned}$$
For the Fourier transform, we must again introduce $$\eta \to 0^+$$
(although note the sign):
$$\begin{aligned}
G_{\nu \nu'}^A(\omega)
&= \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big) \int_{-\infty}^\infty \Theta(-t) e^{i (E_n - E_{n'}) t / \hbar} e^{i (\omega - i \eta) t} \dd{t}
\\
&= \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big) \int_{-\infty}^0 e^{i (E_n - E_{n'}) t / \hbar} e^{i (\omega - i \eta) t} \dd{t}
\\
&= \frac{i}{\hbar Z} \sum_{n n'} \Big( ... \Big)
\bigg[ \frac{\hbar e^{i (\hbar \omega + E_n - E_{n'}) t / \hbar} e^{\eta t}}{i (\hbar \omega + E_n - E_{n'}) + \hbar \eta} \bigg]_{-\infty}^0
\end{aligned}$$
Therefore, the Lehmann representation of
the advanced Green's function $$G_{\nu \nu'}^A$$ is as follows:
$$\begin{aligned}
\boxed{
G_{\nu \nu'}^A(\omega)
= \frac{1}{Z} \sum_{n n'}
\frac{\matrixel{n}{\hat{c}_\nu}{n'} \matrixel{n'}{\hat{c}_{\nu'}^\dagger}{n}}{\hbar (\omega - i \eta) + E_n - E_{n'}}
\Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big)
}
\end{aligned}$$
As a final note, let us take the complex conjugate of this expression:
$$\begin{aligned}
\big( G_{\nu \nu'}^A(\omega) \big)^*
= \frac{1}{Z} \sum_{n n'}
\frac{\matrixel{n}{\hat{c}_{\nu'}}{n'} \matrixel{n'}{\hat{c}_\nu^\dagger}{n}}{\hbar (\omega + i \eta) + E_n - E_{n'}}
\Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big)
\end{aligned}$$
Note the subscripts $$\nu$$ and $$\nu'$$.
Comparing this to $$G_{\nu \nu'}^R$$ gives us another useful relation:
$$\begin{aligned}
\boxed{
G^R_{\nu \nu'}(\omega)
= \big( G^A_{\nu' \nu}(\omega) \big)^*
}
\end{aligned}$$
## References
1. H. Bruus, K. Flensberg,
*Many-body quantum theory in condensed matter physics*,
2016, Oxford.
|