summaryrefslogtreecommitdiff
path: root/source/know/concept/magnetohydrodynamics/index.md
blob: 4431dfa807eb86d198d75d32277ec0e2bbfca917 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
---
title: "Magnetohydrodynamics"
sort_title: "Magnetohydrodynamics"
date: 2021-10-21
categories:
- Physics
- Plasma physics
- Electromagnetism
layout: "concept"
---

**Magnetohydrodynamics** (MHD) describes the dynamics
of fluids that are electrically conductive.
Notably, it is often suitable to describe plasmas,
and can be regarded as a special case of the
[two-fluid model](/know/concept/two-fluid-equations/);
we will derive it as such,
but the results are not specific to plasmas.

In the two-fluid model, we described the plasma as two separate fluids,
but in MHD we treat it as a single conductive fluid.
The macroscopic pressure $$p$$
and electric current density $$\vb{J}$$ are:

$$\begin{aligned}
    p
    &= p_i + p_e
    \\
    \vb{J}
    &= q_i n_i \vb{u}_i + q_e n_e \vb{u}_e
\end{aligned}$$

Meanwhile, the macroscopic mass density $$\rho$$
and center-of-mass flow velocity $$\vb{u}$$ are as follows,
although the ions dominate both due to their large mass,
so $$\rho \approx m_i n_i$$ and $$\vb{u} \approx \vb{u}_i$$:

$$\begin{aligned}
    \rho
    &= m_i n_i + m_e n_e
    \\
    \vb{u}
    &= \frac{1}{\rho} \Big( m_i n_i \vb{u}_i + m_e n_e \vb{u}_e \Big)
\end{aligned}$$

With these quantities in mind,
we add up the two-fluid continuity equations,
multiplied by their respective particles' masses:

$$\begin{aligned}
    0
    &= m_i \pdv{n_i}{t} + m_e \pdv{n_e}{t} + m_i \nabla \cdot (n_i \vb{u}_i) + m_e \nabla \cdot (n_e \vb{u}_e)
\end{aligned}$$

After some straightforward rearranging,
we arrive at the single-fluid continuity relation:

$$\begin{aligned}
    \boxed{
        \pdv{\rho}{t} + \nabla \cdot (\rho \vb{u})
        = 0
    }
\end{aligned}$$

Next, consider the two-fluid momentum equations
for the ions and electrons, respectively:

$$\begin{aligned}
    m_i n_i \frac{\mathrm{D} \vb{u}_i}{\mathrm{D} t}
    &= q_i n_i (\vb{E} + \vb{u}_i \cross \vb{B}) - \nabla p_i - f_{ie} m_i n_i (\vb{u}_i - \vb{u}_e)
    \\
    m_e n_e \frac{\mathrm{D} \vb{u}_e}{\mathrm{D} t}
    &= q_e n_e (\vb{E} + \vb{u}_e \cross \vb{B}) - \nabla p_e - f_{ei} m_e n_e (\vb{u}_e - \vb{u}_i)
\end{aligned}$$

We will assume that electrons' inertia
is negligible compared to the Lorentz force.
Let $$\tau_\mathrm{char}$$ be the characteristic timescale of the plasma's dynamics
(i.e. nothing notable happens in times shorter than $$\tau_\mathrm{char}$$),
then this assumption can be written as:

$$\begin{aligned}
    1
    \gg \frac{\big| m_e n_e \mathrm{D} \vb{u}_e / \mathrm{D} t \big|}{\big| q_e n_e \vb{u}_e \cross \vb{B} \big|}
    \sim \frac{m_e n_e |\vb{u}_e| / \tau_\mathrm{char}}{q_e n_e |\vb{u}_e| |\vb{B}|}
    = \frac{m_e}{q_e |\vb{B}| \tau_\mathrm{char}}
    = \frac{1}{\omega_{ce} \tau_\mathrm{char}}
\end{aligned}$$

Where we have recognized the cyclotron frequency $$\omega_c$$
(see [Lorentz force](/know/concept/lorentz-force/)).
In other words, our assumption is equivalent to
the electron gyration period $$2 \pi / \omega_{ce}$$
being small compared to the macroscopic timescale $$\tau_\mathrm{char}$$.
We can thus ignore the left-hand side of the electron momentum equation, leaving:

$$\begin{aligned}
    m_i n_i \frac{\mathrm{D} \vb{u}_i}{\mathrm{D} t}
    &= q_i n_i (\vb{E} + \vb{u}_i \cross \vb{B}) - \nabla p_i - f_{ie} m_i n_i (\vb{u}_i - \vb{u}_e)
    \\
    0
    &= q_e n_e (\vb{E} + \vb{u}_e \cross \vb{B}) - \nabla p_e - f_{ei} m_e n_e (\vb{u}_e - \vb{u}_i)
\end{aligned}$$

We add up these momentum equations,
recognizing the pressure $$p$$ and current $$\vb{J}$$:

$$\begin{aligned}
    m_i n_i \frac{\mathrm{D} \vb{u}_i}{\mathrm{D} t}
    &= (q_i n_i + q_e n_e) \vb{E} + \vb{J} \cross \vb{B} - \nabla p
    - f_{ie} m_i n_i (\vb{u}_i \!-\! \vb{u}_e) - f_{ei} m_e n_e (\vb{u}_e \!-\! \vb{u}_i)
    \\
    &= (q_i n_i + q_e n_e) \vb{E} + \vb{J} \cross \vb{B} - \nabla p
\end{aligned}$$

Where we have used $$f_{ie} m_i n_i = f_{ei} m_e n_e$$
because momentum is conserved by the underlying
[Rutherford scattering](/know/concept/rutherford-scattering/) process,
which is [elastic](/know/concept/elastic-collision/).
In other words, the momentum given by ions to electrons
is equal to the momentum received by electrons from ions.

Since the two-fluid model assumes that
the [Debye length](/know/concept/debye-length/) $$\lambda_D$$
is small compared to a "blob" $$\dd{V}$$ of the fluid,
we can invoke quasi-neutrality $$q_i n_i + q_e n_e = 0$$.
Using that $$\rho \approx m_i n_i$$ and $$\vb{u} \approx \vb{u}_i$$,
we thus arrive at the **momentum equation**:

$$\begin{aligned}
    \boxed{
        \rho \frac{\mathrm{D} \vb{u}}{\mathrm{D} t}
        = \vb{J} \cross \vb{B} - \nabla p
    }
\end{aligned}$$

However, we found this by combining two equations into one,
so some information was implicitly lost;
we need a second one to keep our system of equations complete.
Therefore we return to the electrons' momentum equation,
after a bit of rearranging:

$$\begin{aligned}
    \vb{E} + \vb{u}_e \cross \vb{B} - \frac{\nabla p_e}{q_e n_e}
    = \frac{f_{ei} m_e}{q_e} (\vb{u}_e - \vb{u}_i)
\end{aligned}$$

Again using quasi-neutrality $$q_i n_i = - q_e n_e$$,
the current density $$\vb{J} = q_e n_e (\vb{u}_e \!-\! \vb{u}_i)$$,
so:

$$\begin{aligned}
    \vb{E} + \vb{u}_e \cross \vb{B} - \frac{\nabla p_e}{q_e n_e}
    = \eta \vb{J}
    \qquad \qquad
    \eta
    \equiv \frac{f_{ei} m_e}{n_e q_e^2}
\end{aligned}$$

Where $$\eta$$ is the electrical resistivity of the plasma,
see [Spitzer resistivity](/know/concept/spitzer-resistivity/)
for more information and a rough estimate of its value in a plasma.

Now, using that $$\vb{u} \approx \vb{u}_i$$,
we add $$(\vb{u} \!-\! \vb{u}_i) \cross \vb{B} \approx 0$$ to the equation,
and insert $$\vb{J}$$ again:

$$\begin{aligned}
    \eta \vb{J}
    &= \vb{E} + \vb{u} \cross \vb{B} + (\vb{u}_e - \vb{u}_i) \cross \vb{B} - \frac{\nabla p_e}{q_e n_e}
    \\
    &= \vb{E} + \vb{u} \cross \vb{B} + \frac{\vb{J} \cross \vb{B}}{q_e n_e} - \frac{\nabla p_e}{q_e n_e}
\end{aligned}$$

Next, we want to get rid of the pressure term.
To do so, we take the curl of the equation:

$$\begin{aligned}
    \nabla \cross (\eta \vb{J})
    = - \pdv{\vb{B}}{t} + \nabla \cross (\vb{u} \cross \vb{B}) + \nabla \cross \frac{\vb{J} \cross \vb{B}}{q_e n_e}
    - \nabla \cross \frac{\nabla p_e}{q_e n_e}
\end{aligned}$$

Where we have used [Faraday's law](/know/concept/maxwells-equations/).
This is the **induction equation**,
and is used to compute $$\vb{B}$$.
The pressure term can be rewritten using the ideal gas law $$p_e = k_B T_e n_e$$:

$$\begin{aligned}
    \nabla \cross \frac{\nabla p_e}{q_e n_e}
    &= \frac{k_B}{q_e} \nabla \cross \frac{\nabla (n_e T_e)}{n_e}
    \\
    &= \frac{k_B}{q_e} \nabla \cross \Big( \nabla T_e + T_e \frac{\nabla n_e}{n_e} \Big)
\end{aligned}$$

The curl of a gradient is always zero,
and we notice that $$\nabla n_e / n_e = \nabla\! \ln(n_e)$$.
Then we use the vector identity $$\nabla \cross (f \nabla g) = \nabla f \cross \nabla g$$ to get:

$$\begin{aligned}
    \nabla \cross \frac{\nabla p_e}{q_e n_e}
    &= \frac{k_B}{q_e} \nabla \cross \big( T_e \: \nabla\! \ln(n_e) \big)
    \\
    &= \frac{k_B}{q_e} \big( \nabla T_e \cross \nabla\! \ln(n_e) \big)
    \\
    &= \frac{k_B}{q_e n_e} \big( \nabla T_e \cross \nabla n_e \big)
\end{aligned}$$

It is reasonable to assume that $$\nabla T_e$$ and $$\nabla n_e$$
point in roughly the same direction,
in which case the pressure term can be neglected.
Consequently, $$p_e$$ has no effect on the dynamics of $$\vb{B}$$,
so we argue that it can also be dropped
from the original equation (before taking the curl):

$$\begin{aligned}
    \boxed{
        \vb{E} + \vb{u} \cross \vb{B} + \frac{\vb{J} \cross \vb{B}}{q_e n_e}
        = \eta \vb{J}
    }
\end{aligned}$$

This is known as the **generalized Ohm's law**,
since it contains the relation $$\vb{E} = \eta \vb{J}$$.

Next, consider [Ampère's law](/know/concept/maxwells-equations/),
where we would like to neglect the last term:

$$\begin{aligned}
    \nabla \cross \vb{B}
    = \mu_0 \vb{J} + \frac{1}{c^2} \pdv{\vb{E}}{t}
\end{aligned}$$

From Faraday's law, we can obtain a scale estimate for $$\vb{E}$$.
Recall that $$\tau_\mathrm{char}$$ is the characteristic timescale of the plasma,
and let $$\lambda_\mathrm{char} \gg \lambda_D$$ be its characteristic length scale:

$$\begin{aligned}
    \nabla \cross \vb{E}
    = - \pdv{\vb{B}}{t}
    \qquad \implies \qquad
    |\vb{E}|
    \sim \frac{\lambda_\mathrm{char}}{\tau_\mathrm{char}} |\vb{B}|
\end{aligned}$$

From this, we find that we can neglect the last term in Ampère's law
as long as the characteristic velocity $$v_\mathrm{char}$$ is tiny compared to $$c$$,
i.e. the plasma must be non-relativistic:

$$\begin{aligned}
    1
    \gg \frac{\big| (\ipdv{\vb{E}}{t}) / c^2 \big|}{\big| \nabla \cross \vb{B} \big|}
    \sim \frac{|\vb{E}| / \tau_\mathrm{char}}{|\vb{B}| c^2 / \lambda_\mathrm{char}}
    \sim \frac{|\vb{B}| \lambda_\mathrm{char}^2 / \tau_\mathrm{char}^2}{|\vb{B}| c^2}
    = \frac{v_\mathrm{char}^2}{c^2}
\end{aligned}$$

We thus have the following reduced form of Ampère's law,
in addition to Faraday's law:

$$\begin{aligned}
    \boxed{
        \nabla \cross \vb{B}
        = \mu_0 \vb{J}
    }
    \qquad \qquad
    \boxed{
        \nabla \cross \vb{E}
        = - \pdv{\vb{B}}{t}
    }
\end{aligned}$$

Finally, we revisit the thermodynamic equation of state,
for a single fluid this time.
Using the product rule of differentiation yields:

$$\begin{aligned}
    0
    &= \frac{\mathrm{D}}{\mathrm{D} t} \Big( \frac{p}{\rho^\gamma} \Big)
    = \frac{\mathrm{D} p}{\mathrm{D} t} \rho^{-\gamma} - p \gamma \rho^{-\gamma - 1} \frac{\mathrm{D} \rho}{\mathrm{D} t}
\end{aligned}$$

The continuity equation allows us to rewrite
the [material derivative](/know/concept/material-derivative/)
$$\mathrm{D} \rho / \mathrm{D} t$$ as follows:

$$\begin{aligned}
    0
    &= \pdv{\rho}{t} + \nabla \cdot (\rho \vb{u})
    \\
    &= \pdv{\rho}{t} + \rho \nabla \cdot \vb{u} + \vb{u} \cdot \nabla \rho
    \\
    &= \rho \nabla \cdot \vb{u} + \frac{\mathrm{D} \rho}{\mathrm{D} t}
\end{aligned}$$

Inserting this into the equation of state
leads us to a differential equation for $$p$$:

$$\begin{aligned}
    0
    = \frac{\mathrm{D} p}{\mathrm{D} t} + p \gamma \frac{1}{\rho} \rho \nabla \cdot \vb{u}
    \quad \implies \quad
    \boxed{
        \frac{\mathrm{D} p}{\mathrm{D} t} = - p \gamma \nabla \cdot \vb{u}
    }
\end{aligned}$$

This closes the set of 14 MHD equations for 14 unknowns.
Originally, the two-fluid model had 16 of each,
but we have merged $$n_i$$ and $$n_e$$ into $$\rho$$,
and $$p_i$$ and $$p_i$$ into $$p$$.



## Ohm's law variants

It is worth discussing the generalized Ohm's law in more detail.
Its full form was:

$$\begin{aligned}
    \vb{E} + \vb{u} \cross \vb{B} + \frac{\vb{J} \cross \vb{B}}{q_e n_e}
    = \eta \vb{J}
\end{aligned}$$

However, most authors neglect some terms:
the full form is used for **Hall MHD**,
where $$\vb{J} \cross \vb{B}$$ is called the **Hall term**.
It can be dropped in any of the following cases:

$$\begin{aligned}
    1
    &\gg \frac{\big| \vb{J} \cross \vb{B} / q_e n_e \big|}{\big| \vb{u} \cross \vb{B} \big|}
    \sim \frac{\rho v_\mathrm{char} / \tau_\mathrm{char}}{v_\mathrm{char} |\vb{B}| q_i n_i}
    \approx \frac{m_i n_i}{|\vb{B}| q_i n_i \tau_\mathrm{char}}
    = \frac{1}{\omega_{ci} \tau_\mathrm{char}}
    \\
    1
    &\gg \frac{\big| \vb{J} \cross \vb{B} / q_e n_e \big|}{\big| \eta \vb{J} \big|}
    \sim \frac{|\vb{J}| |\vb{B}| q_e^2 n_e}{f_{ei} m_e |\vb{J}| q_e n_e}
    = \frac{|\vb{B}| q_e}{f_{ei} m_e}
    = \frac{\omega_{ce}}{f_{ei}}
\end{aligned}$$

Where we have used the MHD momentum equation with $$\nabla p \approx 0$$
to obtain the scale estimate $$|\vb{J} \cross \vb{B}| \sim \rho v_\mathrm{char} / \tau_\mathrm{char}$$.
In other words, if the ion gyration period is short $$\tau_\mathrm{char} \gg \omega_{ci}$$,
and/or if the electron gyration period is long
compared to the electron-ion collision period $$\omega_{ce} \ll f_{ei}$$,
then we are left with this form of Ohm's law, used in **resistive MHD**:

$$\begin{aligned}
    \vb{E} + \vb{u} \cross \vb{B}
    = \eta \vb{J}
\end{aligned}$$

Finally, we can neglect the resistive term $$\eta \vb{J}$$
if the Lorentz force is much larger.
We formalize this condition as follows,
where we have used Ampère's law to find $$|\vb{J}| \sim |\vb{B}| / \mu_0 \lambda_\mathrm{char}$$:

$$\begin{aligned}
    1
    \ll \frac{\big| \vb{u} \cross \vb{B} \big|}{\big| \eta \vb{J} \big|}
    \sim \frac{v_\mathrm{char} |\vb{B}|}{\eta |\vb{J}|}
    \sim \frac{v_\mathrm{char} |\vb{B}|}{\eta |\vb{B}| / \mu_0 \lambda_\mathrm{char}}
    = \mathrm{R_m}
\end{aligned}$$

Where we have defined the **magnetic Reynolds number** $$\mathrm{R_m}$$ as follows,
which is analogous to the fluid [Reynolds number](/know/concept/reynolds-number/) $$\mathrm{Re}$$:

$$\begin{aligned}
    \boxed{
        \mathrm{R_m}
        \equiv \frac{v_\mathrm{char} \lambda_\mathrm{char}}{\eta / \mu_0}
    }
\end{aligned}$$

If $$\mathrm{R_m} \ll 1$$, the plasma is "electrically viscous",
meaning resistivity needs to be accounted for,
whereas if $$\mathrm{R_m} \gg 1$$, the resistivity is negligible,
in which case we have **ideal MHD**:

$$\begin{aligned}
    \boxed{
        \vb{E} + \vb{u} \cross \vb{B}
        = 0
    }
\end{aligned}$$



## References
1.  P.M. Bellan,
    *Fundamentals of plasma physics*,
    1st edition, Cambridge.
2.  M. Salewski, A.H. Nielsen,
    *Plasma physics: lecture notes*,
    2021, unpublished.