1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
---
title: "Matsubara Green's function"
sort_title: "Matsubara Green's function"
date: 2021-11-12
categories:
- Physics
- Quantum mechanics
layout: "concept"
---
The **Matsubara Green's function** is an
[imaginary-time](/know/concept/imaginary-time/) version
of the real-time [Green's functions](/know/concept/greens-functions/).
We define it as follows in the imaginary-time
[Heisenberg picture](/know/concept/heisenberg-picture/):
$$\begin{aligned}
\boxed{
C_{AB}(\tau, \tau')
\equiv -\frac{1}{\hbar} \Expval{\mathcal{T} \big\{ \hat{A}(\tau) \hat{B}(\tau') \big\}}
}
\end{aligned}$$
Where the expectation value $$\Expval{}$$ is with respect to thermodynamic equilibrium,
and $$\mathcal{T}$$ is the [time-ordered product](/know/concept/time-ordered-product/) pseudo-operator.
Because the Hamiltonian $$\hat{H}$$ cannot depend on the imaginary time,
$$C_{AB}$$ is a function of the difference $$\tau \!-\! \tau'$$ only:
$$\begin{aligned}
C_{AB}(\tau, \tau')
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{A}(\tau) \hat{B}(\tau') \Big)
\\
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar}
e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar} \Big)
\\
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} \Big)
\end{aligned}$$
For $$\tau > \tau'$$, we see by expanding in the many-particle eigenstates $$\Ket{n}$$
that we need to demand $$\hbar \beta > \tau \!-\! \tau'$$ to prevent
$$C_{AB}$$ from diverging for increasing temperatures:
$$\begin{aligned}
C_{AB}(\tau \!-\! \tau')
&= - \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar}
\hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n}
\\
&= - \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{\hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n} e^{-\beta E_n} e^{(\tau - \tau') E_n / \hbar}
\end{aligned}$$
And likewise, for $$\tau < \tau'$$,
we must demand that $$\tau \!-\! \tau' > -\hbar \beta$$
for the same reason:
$$\begin{aligned}
C_{AB}(\tau \!-\! \tau')
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{B}(\tau') \hat{A}(\tau) \Big)
\\
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} \Big)
\\
&= \mp \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{\hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n} e^{-\beta E_n} e^{- (\tau - \tau') E_n / \hbar}
\end{aligned}$$
With $$-$$ for bosons, and $$+$$ for fermions,
due to the time-ordered product for $$\tau > \tau'$$.
On this domain $$[-\hbar \beta, \hbar \beta]$$,
the Matsubara Green's function $$C_{AB}$$
obeys a useful shift relation:
it is $$\hbar \beta$$-periodic for bosons,
and $$\hbar \beta$$-antiperiodic for fermions:
$$\begin{aligned}
\boxed{
C_{AB}(\tau \!-\! \tau') =
\begin{cases}
\pm C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta)
& \mathrm{if\;} \tau \!-\! \tau' < 0
\\
\pm C_{AB}(\tau \!-\! \tau' \!-\! \hbar \beta)
& \mathrm{if\;} \tau \!-\! \tau' > 0
\end{cases}
}
\end{aligned}$$
{% include proof/start.html id="proof-period" -%}
First $$\tau \!-\! \tau' < 0$$.
We insert the argument $$\tau \!-\! \tau' \!+\! \hbar \beta$$,
and use the cyclic property:
$$\begin{aligned}
C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta)
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{(\tau - \tau' + \hbar \beta) \hat{H} / \hbar}
\hat{A} e^{-(\tau - \tau' + \hbar \beta) \hat{H} / \hbar} \hat{B} \Big)
\\
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} e^{-\beta \hat{H}} \hat{B} \Big)
\\
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar}
e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar} \Big)
\\
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{B}(\tau') \hat{A}(\tau) \Big)
\end{aligned}$$
Since $$\tau < \tau'$$ by assumption,
we can bring back the time-ordered product $$\mathcal{T}$$:
$$\begin{aligned}
C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta)
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \mathcal{T}\big\{ \hat{A}(\tau) \hat{B}(\tau') \big\} \Big)
\\
&= \pm C_{AB}(\tau \!-\! \tau')
\end{aligned}$$
Moving on to $$\tau \!-\! \tau' > 0$$, the proof is perfectly analogous:
$$\begin{aligned}
C_{AB}(\tau \!-\! \tau' \!-\! \hbar \beta)
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{-(\tau - \tau' - \hbar \beta) \hat{H} / \hbar}
\hat{B} e^{(\tau - \tau' - \hbar \beta) \hat{H} / \hbar} \hat{A} \Big)
\\
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} e^{-\beta \hat{H}} \hat{A} \Big)
\\
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar}
e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar} \Big)
\\
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{A}(\tau) \hat{B}(\tau') \Big)
\\
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \mathcal{T}\big\{ \hat{A}(\tau) \hat{B}(\tau') \big\} \Big)
\\
&= \pm C_{AB}(\tau \!-\! \tau')
\end{aligned}$$
{% include proof/end.html id="proof-period" %}
Due to this limited domain $$\tau \in [-\hbar \beta, \hbar \beta]$$,
the [Fourier transform](/know/concept/fourier-transform/)
of $$C_{AB}(\tau)$$ consists of discrete frequencies
$$k_n \equiv n \pi / (\hbar \beta)$$.
The forward and inverse Fourier transforms
are therefore defined as given below (with $$\tau' = 0$$).
It is convention to write $$C_{AB}(i k_n)$$ instead of $$C_{AB}(k_n)$$:
$$\begin{aligned}
\boxed{
\begin{aligned}
C_{AB}(i k_n)
&\equiv \frac{1}{2} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
\\
C_{AB}(\tau)
&= \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty C_{AB}(i k_n) e^{-i k_n \tau}
\end{aligned}
}
\end{aligned}$$
{% include proof/start.html id="proof-fourier-def" -%}
We will prove that one is indeed the inverse of the other.
We demand that the inverse FT of the forward FT of $$C_{AB}(\tau)$$
is simply $$C_{AB}(\tau)$$ again:
$$\begin{aligned}
C_{AB}(\tau)
&= \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty
\bigg( \frac{1}{2} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: e^{i k_n \tau'} \dd{\tau'} \bigg) e^{-i k_n \tau}
\\
&= \frac{1}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau')
\bigg( \frac{1}{2} \sum_{n = -\infty}^\infty e^{i k_n (\tau' - \tau)} \bigg) \dd{\tau'}
\\
&= \frac{\pi}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau')
\bigg( \frac{1}{2 \pi} \sum_{n = -\infty}^\infty e^{i \pi n (\tau' - \tau) / \hbar \beta} \bigg) \dd{\tau'}
\end{aligned}$$
Here, the inner expression turns out to be
a [Dirac delta function](/know/concept/dirac-delta-function/):
$$\begin{aligned}
\frac{1}{2 \pi} \sum_{n = -\infty}^\infty e^{i n x}
= \delta(x)
\end{aligned}$$
From which the rest of the proof follows straightforwardly:
$$\begin{aligned}
C_{AB}(\tau)
&= \frac{\pi}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta\big( (\tau' \!-\! \tau) \pi / \hbar \beta \big) \dd{\tau'}
\\
&= \frac{\pi \hbar \beta}{\pi \hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta(\tau' \!-\! \tau) \dd{\tau'}
\\
&= \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta(\tau' \!-\! \tau) \dd{\tau'}
\\
&= C_{AB}(\tau)
\end{aligned}$$
{% include proof/end.html id="proof-fourier-def" %}
Let us now define the **Matsubara frequencies** $$\omega_n$$
as a species-dependent subset of $$k_n$$:
$$\begin{aligned}
\boxed{
\omega_n \equiv
\begin{cases}
\displaystyle\frac{2 n \pi}{\hbar \beta}
& \mathrm{bosons}
\\
\displaystyle\frac{(2 n + 1) \pi}{\hbar \beta}
& \mathrm{fermions}
\end{cases}
}
\end{aligned}$$
With this, we can rewrite the definition of the forward Fourier transform as follows:
$$\begin{aligned}
\boxed{
C_{AB}(i \omega_n)
= \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i \omega_n \tau} \dd{\tau}
= \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i \omega_n \tau} \dd{\tau}
}
\end{aligned}$$
{% include proof/start.html id="proof-fourier-alt" -%}
We split the integral, shift its limits,
and use the (anti)periodicity of $$C_{AB}$$:
$$\begin{aligned}
C_{AB}(i k_n)
&= \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
+ \frac{1}{2} \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
\\
&= \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
+ \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau \!-\! \hbar \beta) \: e^{i k_n (\tau - \hbar \beta)} \dd{\tau}
\\
&= \frac{1}{2} \int_0^{\hbar \beta} \Big( C_{AB}(\tau) \pm C_{AB}(\tau) \: e^{-i k_n \hbar \beta} \Big) \: e^{i k_n \tau} \dd{\tau}
\\
&= \frac{1}{2} \big( 1 \pm e^{-i k_n \hbar \beta} \big) \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
\end{aligned}$$
With $$+$$ for bosons, and $$-$$ for fermions. Since $$k_n \equiv n \pi / (\hbar \beta)$$,
we know $$e^{-i k_n \hbar \beta} \in \{-1, 1\}$$,
so for bosons all odd $$n$$ vanish, and for fermions all even $$n$$,
yielding the desired result.
For the other case, we simply shift the first integral's limits instead of the seconds':
$$\begin{aligned}
C_{AB}(i k_n)
&= \frac{1}{2} \int_{-\hbar \beta}^0 C_{AB}(\tau \!+\! \hbar \beta) \: e^{i k_n (\tau + \hbar \beta)} \dd{\tau}
+ \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
\\
&= \frac{1}{2} \int_{-\hbar \beta}^0 \Big( C_{AB}(\tau) \pm C_{AB}(\tau) \: e^{i k_n \hbar \beta} \Big) \: e^{i k_n \tau} \dd{\tau}
\\
&= \frac{1}{2} \big( 1 \pm e^{-i k_n \hbar \beta} \big) \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
\end{aligned}$$
{% include proof/end.html id="proof-fourier-alt" %}
If we actually evaluate this,
we obtain the following form of $$C_{AB}$$,
which is almost identical to the
[Lehmann representation](/know/concept/lehmann-representation/)
of the "ordinary" retarded and advanced Green's functions:
$$\begin{aligned}
\boxed{
C_{AB}(i \omega_m)
= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}}
\Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big)
}
\end{aligned}$$
{% include proof/start.html id="proof-lehmann" -%}
For $$\tau \!-\! \tau' > 0$$, we start by expanding
in the many-particle eigenstates $$\Ket{n}$$:
$$\begin{aligned}
C_{AB}(\tau \!-\! \tau')
&= - \frac{1}{\hbar Z} \sum_{n}
\Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n}
\\
&= - \frac{1}{\hbar Z} \sum_{n n'} \Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n'}
\Matrixel{n'}{e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n}
\\
&= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'}
\matrixel{n'}{\hat{B}}{n} e^{(E_n - E_{n'})(\tau - \tau') / \hbar}
\end{aligned}$$
We take the Fourier transform by integrating over $$[0, \hbar \beta]$$:
$$\begin{aligned}
C_{AB}(i \omega_m)
&= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'}
\matrixel{n'}{\hat{B}}{n} \int_0^{\hbar \beta} e^{(E_n - E_{n'}) \tau / \hbar} e^{i \omega_m \tau} \dd{\tau}
\\
&= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}
\bigg[ \frac{\hbar e^{(i \hbar \omega_m + E_n - E_{n'}) \tau / \hbar}}{i \hbar \omega_m + E_n - E_{n'}} \bigg]_0^{\hbar \beta}
\\
&= - \frac{1}{Z} \sum_{n n'} e^{-\beta E_n} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}}
\Big( e^{(i \hbar \omega_m + E_n - E_{n'}) \beta} - 1 \Big)
\\
&= - \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}}
\Big( e^{i \hbar \omega_m \beta} e^{-\beta E_{n'}} - e^{-\beta E_n} \Big)
\\
&= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}}
\Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big)
\end{aligned}$$
Moving on to $$\tau \!-\! \tau' < 0$$,
we again expand in the many-particle eigenstates $$\Ket{n}$$:
$$\begin{aligned}
C_{AB}(\tau \!-\! \tau')
&= \mp \frac{1}{\hbar Z} \sum_{n}
\Matrixel{n}{e^{-\beta \hat{H}} e^{- (\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n}
\\
&= \mp \frac{1}{\hbar Z} \sum_{n n'} \Matrixel{n}{e^{-\beta \hat{H}} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n'}
\Matrixel{n'}{e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n}
\\
&= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'}
\matrixel{n'}{\hat{A}}{n} e^{-(E_n - E_{n'})(\tau - \tau') / \hbar}
\end{aligned}$$
Since $$\tau \!-\! \tau' < 0$$ this time,
we take the Fourier transform over $$[-\hbar \beta, 0]$$:
$$\begin{aligned}
C_{AB}(i \omega_m)
&= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'}
\matrixel{n'}{\hat{A}}{n} \int_{-\hbar \beta}^0 e^{-(E_n - E_{n'}) \tau / \hbar} e^{i \omega_m \tau} \dd{\tau}
\\
&= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}
\bigg[ \frac{\hbar e^{(i \hbar \omega_m - E_n + E_{n'}) \tau / \hbar}}{i \hbar \omega_m - E_n + E_{n'}} \bigg]_{-\hbar \beta}^0
\\
&= \mp \frac{1}{Z} \sum_{n n'} e^{-\beta E_n} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}}
\Big( 1 - e^{(-i \hbar \omega_m + E_n - E_{n'}) \beta} \Big)
\\
&= \mp \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}}
\Big( e^{-\beta E_n} - e^{-i \hbar \omega_m \beta} e^{-\beta E_{n'}} \Big)
\\
&= \mp \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}}
\Big( e^{- \beta E_n} \pm e^{-\beta E_{n'}} \Big)
\\
&= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}}
\Big( e^{- \beta E_{n'}} \mp e^{-\beta E_n} \Big)
\end{aligned}$$
Where swapping $$n$$ and $$n'$$ gives the desired result.
{% include proof/end.html id="proof-lehmann" %}
This gives us the primary use of the Matsubara Green's function $$C_{AB}$$:
calculating the retarded $$C_{AB}^R$$ and advanced $$C_{AB}^A$$.
Once we have an expression for Matsubara's $$C_{AB}$$,
we can recover $$C_{AB}^R$$ and $$C_{AB}^A$$ by substituting
$$i \omega_m \to \omega \!+\! i \eta$$ and $$i \omega_m \to \omega \!-\! i \eta$$ respectively.
In general, we can define the **canonical Green's function** $$C_{AB}(z)$$
on the complex plane:
$$\begin{aligned}
C_{AB}(z)
= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{z + E_n - E_{n'}}
\Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big)
\end{aligned}$$
This is a [holomorphic function](/know/concept/holomorphic-function/),
except for poles on the real axis.
It turns out that $$C_{AB}(z)$$ must have these properties
for the substitution $$i \omega_n \to \omega \!\pm\! i \eta$$ to be valid.
## References
1. H. Bruus, K. Flensberg,
*Many-body quantum theory in condensed matter physics*,
2016, Oxford.
|