1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
---
title: "Matsubara sum"
sort_title: "Matsubara sum"
date: 2021-11-13
categories:
- Physics
- Quantum mechanics
layout: "concept"
---
A **Matsubara sum** is a summation of the following form,
which notably appears as the inverse
[Fourier transform](/know/concept/fourier-transform/) of the
[Matsubara Green's function](/know/concept/matsubara-greens-function/):
$$\begin{aligned}
\boxed{
S_{B,F}
\equiv \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty g(i \omega_n) \: e^{i \omega_n \tau}
}
\end{aligned}$$
$$g(z)$$ is a *meromorphic* function on the complex frequency plane,
i.e. it is [holomorphic](/know/concept/holomorphic-function/)
except for a known set of simple poles,
and $$\tau \in [-\hbar \beta, \hbar \beta]$$ is a real parameter.
The Matsubara frequencies $$i \omega_n$$ are defined as follows
for bosons (subscript $$B$$) or fermions (subscript $$F$$):
$$\begin{aligned}
\omega_n \equiv
\begin{cases}
\displaystyle\frac{2 n \pi}{\hbar \beta}
& \mathrm{bosons}
\\
\displaystyle\frac{(2 n + 1) \pi}{\hbar \beta}
& \mathrm{fermions}
\end{cases}
\end{aligned}$$
How do we evaluate Matsubara sums?
Given a counter-clockwise closed contour $$C$$,
recall that the [residue theorem](/know/concept/residue-theorem/)
turns an integral over $$C$$ into a sum of the residues
of all the integrand's simple poles $$p_g$$ that are enclosed by $$C$$:
$$\begin{aligned}
\oint_C \frac{g(z) \: e^{z \tau}}{i 2 \pi} \dd{z}
= \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \: e^{z \tau} \Big\}
= \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \Big\} \: e^{p_g \tau}
\end{aligned}$$
Now, the trick is to manipulate this relation
until a Matsubara sum appears on the right.
Let us introduce a (for now) unspecified weight function $$h(z)$$,
which crucially does not share any simple poles with $$g(z)$$,
so $$\{p_g\} \cap \{p_h\} = \emptyset$$.
This constraint allows us to split the sum:
$$\begin{aligned}
\oint_C \frac{g(z) \: h(z) \: e^{z \tau}}{i 2 \pi} \dd{z}
&= \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \: h(z) \: e^{z \tau} \Big\}
+ \sum_{p_h} \underset{z \to p_h}{\mathrm{Res}}\Big\{ g(z) \: h(z) \: e^{z \tau} \Big\}
\\
&= \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \Big\} \: h(p_g) \: e^{p_g \tau}
+ \sum_{p_h} g(p_h) \: \underset{z \to p_h}{\mathrm{Res}}\Big\{ h(z) \Big\} \: e^{p_h \tau}
\end{aligned}$$
Here, we could make the rightmost term look like a Matsubara sum
if we choose $$h$$ such that it has poles at $$i \omega_n$$.
We make the following choice,
where $$n_B(z)$$ is the [Bose-Einstein distribution](/know/concept/bose-einstein-distribution/) for bosons,
and $$n_F(z)$$ is the [Fermi-Dirac distribution](/know/concept/fermi-dirac-distribution/) for fermions:
$$\begin{aligned}
h(z)
\equiv
\begin{cases}
n_{B,F}(z) & \mathrm{if}\; \tau \ge 0
\\
-n_{B,F}(-z) & \mathrm{if}\; \tau \le 0
\end{cases}
\end{aligned}$$
The distinction between the signs of $$\tau$$ is necessary
to ensure that $$h(z) \: e^{z \tau} \to 0$$ for all $$z$$ when $$|z| \to \infty$$
(take a moment to convince yourself of this).
The sign flip for $$\tau \le 0$$ is also needed,
as negating the argument negates the residues
$$\mathrm{Res}\{ n_{B,F}(-i \omega_n) \} = -\mathrm{Res}\{ n_{B,F}(i \omega_n) \}$$.
Indeed, this choice of $$h$$ has poles at the respective
Matsubara frequencies $$i \omega_n$$ of bosons and fermions,
and the residues are given by:
$$\begin{aligned}
\underset{z \to i \omega_n}{\mathrm{Res}}\!\Big\{ n_B(z) \Big\}
&= \lim_{z \to i \omega_n}\!\bigg( \frac{z - i \omega_n}{e^{\hbar \beta z} - 1} \bigg)
= \lim_{\eta \to 0}\!\bigg( \frac{i \omega_n + \eta - i \omega_n}{e^{i \hbar \beta \omega_n} e^{\hbar \beta \eta} - 1} \bigg)
\\
&= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{e^{\hbar \beta \eta} - 1} \bigg)
= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{1 + \hbar \beta \eta - 1} \bigg)
= \frac{1}{\hbar \beta}
\\
\underset{z \to i \omega_n}{\mathrm{Res}}\!\Big\{ n_F(z) \Big\}
&= \lim_{z \to i \omega_n}\!\bigg( \frac{z - i \omega_n}{e^{\hbar \beta z} + 1} \bigg)
= \lim_{\eta \to 0}\!\bigg( \frac{i \omega_n + \eta - i \omega_n}{e^{i \hbar \beta \omega_n} e^{\hbar \beta \eta} + 1} \bigg)
\\
&= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{e^{\hbar \beta \eta} + 1} \bigg)
= \lim_{\eta \to 0}\!\bigg( \frac{\eta}{- 1 - \hbar \beta \eta + 1} \bigg)
= - \frac{1}{\hbar \beta}
\end{aligned}$$
With this, our contour integral can now be rewritten as follows:
$$\begin{aligned}
\oint_C \frac{g(z) \: h(z) \: e^{z \tau}}{i 2 \pi} \dd{z}
&= \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \Big\} \: n_{B,F}(p_g) \: e^{p_g \tau}
+ \sum_{i \omega_n} g(i \omega_n) \underset{z \to i \omega_n}{\mathrm{Res}}\!\Big\{ n_{B,F}(z) \Big\} \: e^{i \omega_n \tau}
\\
&= \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \Big\} \: n_{B,F}(p_g) \: e^{p_g \tau}
\pm \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty g(i \omega_n) \: e^{i \omega_n \tau}
\end{aligned}$$
Where the top sign ($$+$$) is for bosons,
and the bottom sign ($$-$$) is for fermions.
Here, we recognize the last term as the Matsubara sum $$S_{F,B}$$.
Isolating for that yields:
$$\begin{aligned}
S_{B,F}
= \mp \sum_{p_g} \underset{z \to p_g}{\mathrm{Res}}\Big\{ g(z) \Big\} \: n_{B,F}(p_g) \: e^{p_g \tau}
\pm \oint_C \frac{g(z) \: h(z) \: e^{z \tau}}{i 2 \pi} \dd{z}
\end{aligned}$$
Now we must choose $$C$$.
Earlier, we took care that $$h(z) \: e^{z \tau} \to 0$$ for $$|z| \to \infty$$,
so a good choice would be a circle of radius $$R$$.
If $$R \to \infty$$, then $$C$$ encloses the whole complex plane,
including all of the integrand's poles.
However, because the integrand decays for $$|z| \to \infty$$,
we conclude that the contour integral must vanish
(also for other choices of $$C$$):
$$\begin{aligned}
C
= R e^{i \theta}
\quad \implies \quad
\lim_{R \to \infty}
\oint_C g(z) \: h(z) \: e^{z \tau} \dd{z}
= 0
\end{aligned}$$
We thus arrive at the following results
for bosonic and fermionic Matsubara sums $$S_{B,F}$$:
$$\begin{aligned}
\boxed{
S_{B,F}
= \mp \sum_{p_g} \underset{ {z \to p_g}}{\mathrm{Res}}\Big\{ g(z) \Big\} \: n_{B,F}(p_g) \: e^{p_g \tau}
}
\end{aligned}$$
## References
1. H. Bruus, K. Flensberg,
*Many-body quantum theory in condensed matter physics*,
2016, Oxford.
|