1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
---
title: "Maxwell-Bloch equations"
sort_title: "Maxwell-Bloch equations"
date: 2021-10-02
categories:
- Physics
- Quantum mechanics
- Two-level system
- Electromagnetism
- Laser theory
layout: "concept"
---
For an electron in a two-orbital system $$\{\ket{g}, \ket{e}\}$$,
the Schrödinger equation has the following general solution,
where $$\varepsilon_g$$ and $$\varepsilon_e$$ are the time-independent eigenenergies,
and the weights $$c_g$$ and $$c_g$$ are functions of $$t$$:
$$\begin{aligned}
\ket{\Psi(t)}
&= c_g(t) \ket{g} e^{-i \varepsilon_g t / \hbar} + c_e(t) \ket{e} e^{-i \varepsilon_e t / \hbar}
\end{aligned}$$
This system is being perturbed by an electromagnetic wave
with [electric field](/know/concept/electric-field/) $$\vb{E}$$ given by:
$$\begin{aligned}
\vb{E}(t)
&\equiv \vb{E}^{-}(t) + \vb{E}^{+}(t)
\end{aligned}$$
Where the forward-propagating component $$\vb{E}^{+}$$
is a modulated plane wave $$\vb{E}_0^{+} e^{-i \omega t}$$
with slowly-varying amplitude $$\vb{E}_0^{+}(t)$$,
and similarly $$\vb{E}^{-}(t) \equiv \vb{E}_0^{-}(t) e^{i \omega t}$$.
Since $$\vb{E}$$ is real, $$\vb{E}_0^{+} \!=\! (\vb{E}_0^{-})^*$$.
For $$\ket{\Psi}$$ as defined above,
the pure [density operator](/know/concept/density-operator/)
$$\hat{\rho}$$ is as follows,
with $$\omega_0 \equiv (\varepsilon_e \!-\! \varepsilon_g) / \hbar$$
being the transition's resonance frequency:
$$\begin{aligned}
\hat{\rho}
= \ket{\Psi} \bra{\Psi}
=
\begin{bmatrix}
c_e c_e^* & c_e c_g^* e^{-i \omega_0 t} \\
c_g c_e^* e^{i \omega_0 t} & c_g c_g^*
\end{bmatrix}
\equiv
\begin{bmatrix}
\rho_{ee} & \rho_{eg} \\
\rho_{ge} & \rho_{gg}
\end{bmatrix}
\end{aligned}$$
Under the [electric dipole approximation](/know/concept/electric-dipole-approximation/)
and [rotating wave approximation](/know/concept/rotating-wave-approximation/),
it can be shown that $$\hat{\rho}$$ is governed by
the [optical Bloch equations](/know/concept/optical-bloch-equations/):
$$\begin{aligned}
\dv{\rho_{gg}}{t}
&= \gamma_e \rho_{ee} - \gamma_g \rho_{gg}
+ \frac{i}{\hbar} \Big( \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} - \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} \Big)
\\
\dv{\rho_{ee}}{t}
&= \gamma_g \rho_{gg} - \gamma_e \rho_{ee}
+ \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} - \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} \Big)
\\
\dv{\rho_{ge}}{t}
&= - \Big( \gamma_\perp - i \omega_0 \Big) \rho_{ge}
+ \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \Big( \rho_{ee} - \rho_{gg} \Big)
\\
\dv{\rho_{eg}}{t}
&= - \Big( \gamma_\perp + i \omega_0 \Big) \rho_{eg}
+ \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \Big( \rho_{gg} - \rho_{ee} \Big)
\end{aligned}$$
Where we have defined the transition dipole moment $$\vb{p}_0^{-}$$,
with $$q < 0$$ the electron charge:
$$\begin{aligned}
\vb{p}_0^{-}
\equiv q \matrixel{e}{\vu{x}}{g}
\qquad \qquad
\vb{p}_0^{+}
\equiv (\vb{p}_0^{-})^*
= q \matrixel{g}{\vu{x}}{e}
\end{aligned}$$
However, the light wave affects the electron,
so the true electromagnetic dipole moment $$\vb{p}$$ is as follows,
using [Laporte's selection rule](/know/concept/selection-rules/)
to remove diagonal terms by assuming that
the electron's orbitals are spatially odd or even:
$$\begin{aligned}
\vb{p}
&= q \matrixel{\Psi}{\vu{x}}{\Psi}
\\
&= q \Big( c_g c_g^* \matrixel{g}{\vu{x}}{g} + c_e c_e^* \matrixel{e}{\vu{x}}{e}
+ c_g c_e^* \matrixel{e}{\vu{x}}{g} e^{i \omega_0 t} + c_e c_g^* \matrixel{g}{\vu{x}}{e} e^{-i \omega_0 t} \Big)
\\
&= q \Big( \rho_{ge} \matrixel{e}{\vu{x}}{g} + \rho_{eg} \matrixel{g}{\vu{x}}{e} \Big)
\\
&= \vb{p}_0^{-} \rho_{ge} + \vb{p}_0^{+} \rho_{eg}
\\
&\equiv \vb{p}^{-} + \vb{p}^{+}
\end{aligned}$$
Where we have split $$\vb{p}$$ analogously to $$\vb{E}$$
by defining $$\vb{p}^{+} \equiv \vb{p}_0^{+} \rho_{eg}$$.
Its equation of motion can then be found from the optical Bloch equations:
$$\begin{aligned}
\dv{\vb{p}^{+}}{t}
&= \vb{p}_0^{+} \dv{\rho_{eg}}{t}
\\
&= - \vb{p}_0^{+} \Big( \gamma_\perp + i \omega_0 \Big) \rho_{eg}
+ \frac{i}{\hbar} \vb{p}_0^{+} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \Big( \rho_{gg} - \rho_{ee} \Big)
\end{aligned}$$
Some authors do not bother multiplying $$\rho_{ge}$$ by $$\vb{p}_0^{+}$$.
In our case, we arrive at a prototype of the first of three Maxwell-Bloch equations:
$$\begin{aligned}
\boxed{
\dv{\vb{p}^{+}}{t}
= - \Big( \gamma_\perp + i \omega_0 \Big) \vb{p}^{+}
- \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \vb{p}_0^{+} d
}
\end{aligned}$$
Where we have defined the **population inversion** $$d \in [-1, 1]$$ like so,
to quantify the electron's "excitedness" i.e. its localization to $$\ket{e}$$:
$$\begin{aligned}
d
\equiv \rho_{ee} - \rho_{gg}
\end{aligned}$$
From the optical Bloch equations,
we find its equation of motion to be:
$$\begin{aligned}
\dv{d}{t}
&= \dv{\rho_{ee}}{t} - \dv{\rho_{gg}}{t}
\\
&= 2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee}
+ \frac{i 2}{\hbar} \Big( \vb{p}^{-} \cdot \vb{E}^{+} - \vb{p}^{+} \cdot \vb{E}^{-} \Big)
\end{aligned}$$
We can rewrite the first two terms in the following intuitive form,
which describes a decay with
rate $$\gamma_\parallel \equiv \gamma_g + \gamma_e$$
towards an equilibrium $$d_0$$:
$$\begin{aligned}
2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee}
= \gamma_\parallel (d_0 - d)
\qquad \qquad
d_0
\equiv \frac{\gamma_g - \gamma_e}{\gamma_g + \gamma_e}
\end{aligned}$$
{% include proof/start.html id="proof-inversion-decay" -%}
We introduce some new terms, and reorganize the expression:
$$\begin{aligned}
2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee}
&= 2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee}
+ \gamma_g \rho_{ee} - \gamma_g \rho_{ee}
+ \gamma_e \rho_{gg} - \gamma_e \rho_{gg}
\\
&= \gamma_g (\rho_{gg} + \rho_{ee}) - \gamma_e (\rho_{gg} + \rho_{ee})
+ \gamma_g (\rho_{gg} - \rho_{ee}) + \gamma_e (\rho_{gg} - \rho_{ee})
\end{aligned}$$
Since the total probability $$\rho_{gg} + \rho_{ee} = 1$$,
and $$d \equiv \rho_{ee} - \rho_{gg}$$, this reduces to:
$$\begin{aligned}
2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee}
&= \gamma_g - \gamma_e - (\gamma_g + \gamma_e) d
\\
&= (\gamma_g + \gamma_e) \Big( \frac{\gamma_g - \gamma_e}{\gamma_g + \gamma_e} - d \Big)
\\
&= \gamma_\parallel ( d_0 - d )
\end{aligned}$$
{% include proof/end.html id="proof-inversion-decay" %}
With this, the equation for the population inversion $$d$$ takes the form below,
namely the second Maxwell-Bloch equation's prototype:
$$\begin{aligned}
\boxed{
\dv{d}{t}
= \gamma_\parallel (d_0 - d) + \frac{i 2}{\hbar} \Big( \vb{p}^{-} \cdot \vb{E}^{+} - \vb{p}^{+} \cdot \vb{E}^{-} \Big)
}
\end{aligned}$$
Finally, we would like a relation between the polarization
and the electric field $$\vb{E}$$,
for which we turn to [Maxwell's equations](/know/concept/maxwells-equations/);
we will effectively derive a modified form of
the [electromagnetic wave equation](/know/concept/electromagnetic-wave-equation/).
Starting from Faraday's law
and splitting $$\vb{B} = \mu_0 (\vb{H} + \vb{M})$$:
$$\begin{aligned}
\nabla \cross \vb{E}
= - \pdv{\vb{B}}{t}
= - \mu_0 \pdv{\vb{H}}{t} - \mu_0 \pdv{\vb{M}}{t}
\end{aligned}$$
We assume that there is no magnetization $$\vb{M} = 0$$.
Then we we take the curl of both sides,
and replace $$\nabla \cross \vb{H}$$ with Ampère's circuital law:
$$\begin{aligned}
\nabla \cross \big( \nabla \cross \vb{E} \big)
= - \mu_0 \pdv{}{t} \big( \nabla \cross \vb{H} \big)
= - \mu_0 \pdv{}{t} \Big( \vb{J}_\mathrm{free} + \pdv{\vb{D}}{t} \Big)
\end{aligned}$$
Inserting the definition $$\vb{D} = \varepsilon_0 \vb{E} + \vb{P}$$
together with Ohm's law $$\vb{J}_\mathrm{free} = \sigma \vb{E}$$ yields:
$$\begin{aligned}
\nabla \cross \big( \nabla \cross \vb{E} \big)
= - \mu_0 \sigma \pdv{\vb{E}}{t} - \mu_0 \varepsilon_0 \pdvn{2}{\vb{E}}{t} - \mu_0 \pdvn{2}{\vb{P}}{t}
\end{aligned}$$
Where $$\sigma$$ is the active material's conductivity, if any;
almost all authors assume $$\sigma = 0$$.
Recall that we are describing the dynamics of a two-level system.
In reality, such a system (e.g. a quantum dot)
is suspended in a passive background medium,
which reacts with a polarization $$\vb{P}_\mathrm{med}$$
to the electric field $$\vb{E}$$.
If the medium is linear, i.e. $$\vb{P}_\mathrm{med} = \varepsilon_0 \chi \vb{E}$$,
then:
$$\begin{aligned}
\mu_0 \pdvn{2}{\vb{P}}{t}
&= - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t}
- \mu_0 \varepsilon_0 \pdvn{2}{\vb{E}}{t} - \mu_0 \pdvn{2}{\vb{P}_\mathrm{med}}{t}
\\
&= - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t}
- \mu_0 \pdvn{2}{}{t}\Big( \varepsilon_0 \vb{E} + \varepsilon_0 \chi \vb{E} \Big)
\\
&= - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t}
- \mu_0 \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{E}}{t}
\end{aligned}$$
Where $$\varepsilon_r \equiv 1 + \chi_e$$ is the medium's relative permittivity.
The speed of light $$c^2 = 1 / (\mu_0 \varepsilon_0)$$,
and the refractive index $$n^2 = \mu_r \varepsilon_r$$,
where $$\mu_r = 1$$ due to our assumption that $$\vb{M} = 0$$,
so the third Maxwell-Bloch equation's prototype is:
$$\begin{aligned}
\boxed{
\mu_0 \pdvn{2}{\vb{P}}{t}
= - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t} - \frac{n^2}{c^2} \pdvn{2}{\vb{E}}{t}
}
\end{aligned}$$
$$\vb{E}$$ and $$\vb{P}$$ can trivially be replaced by $$\vb{E}^{+}$$ and $$\vb{P}^{+}$$.
It is also simple to convert $$\vb{p}^{+}$$ and $$d$$
into the macroscopic $$\vb{P}^{+}$$ and total $$D$$
by summing over all two-level systems in the medium:
$$\begin{aligned}
\vb{P}^{+}(\vb{x}, t)
&= \sum_{\nu} \vb{p}^{+}_\nu \: \delta(\vb{x} - \vb{x}_\nu)
\\
D(\vb{x}, t)
&= \sum_{\nu} d_\nu \: \delta(\vb{x} - \vb{x}_\nu)
\end{aligned}$$
We thus arrive at the **Maxwell-Bloch equations**,
which are the foundation of laser theory:
$$\begin{aligned}
\boxed{
\begin{aligned}
\mu_0 \pdvn{2}{\vb{P}^{+}}{t}
&= - \nabla \cross \nabla \cross \vb{E}^{+} - \mu_0 \sigma \pdv{\vb{E}^{+}}{t} - \frac{n^2}{c^2} \pdvn{2}{\vb{E}^{+}}{t}
\\
\pdv{\vb{P}^{+}}{t}
&= - \Big( \gamma_\perp + i \omega_0 \Big) \vb{P}^{+}
- \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \vb{p}_0^{+} D
\\
\pdv{D}{t}
&= \gamma_\parallel (D_0 - D) + \frac{i 2}{\hbar} \Big( \vb{P}^{-} \cdot \vb{E}^{+} - \vb{P}^{+} \cdot \vb{E}^{-} \Big)
\end{aligned}
}
\end{aligned}$$
## References
1. F. Kärtner,
[Ultrafast optics: lecture notes](https://ocw.mit.edu/courses/6-977-ultrafast-optics-spring-2005/pages/lecture-notes/),
2005, Massachusetts Institute of Technology.
2. H. Haken,
*Light: volume 2: laser light dynamics*,
1985, North-Holland.
|