summaryrefslogtreecommitdiff
path: root/source/know/concept/maxwell-bloch-equations/index.md
blob: 86d706318d69bf72348e6a3ba50f08210ca78efd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
---
title: "Maxwell-Bloch equations"
date: 2021-10-02
categories:
- Physics
- Quantum mechanics
- Two-level system
- Electromagnetism
- Laser theory
layout: "concept"
---

For an electron in a two-level system with time-independent states
$\Ket{g}$ (ground) and $\Ket{e}$ (excited),
consider the following general solution
to the full Schrödinger equation:

$$\begin{aligned}
    \Ket{\Psi}
    &= c_g \: \Ket{g} \exp(-i E_g t / \hbar) + c_e \: \Ket{e} \exp(-i E_e t / \hbar)
\end{aligned}$$

Perturbing this system with
an [electromagnetic wave](/know/concept/electromagnetic-wave-equation/)
introduces a time-dependent sinusoidal term $\hat{H}_1$ to the Hamiltonian.
In the [electric dipole approximation](/know/concept/electric-dipole-approximation/),
$\hat{H}_1$ is given by:

$$\begin{aligned}
    \hat{H}_1(t)
    = - \hat{\vb{p}} \cdot \vb{E}(t)
    \qquad \qquad
    \vu{p}
    \equiv q \vu{x}
    \qquad \qquad
    \vb{E}(t)
    = \vb{E}_0 \cos(\omega t)
\end{aligned}$$

Where $\vb{E}$ is an [electric field](/know/concept/electric-field/),
and $\hat{\vb{p}}$ is the dipole moment operator.
From [Rabi oscillation](/know/concept/rabi-oscillation/),
we know that the time-varying coefficients $c_g$ and $c_e$
can then be described by:

$$\begin{aligned}
    \dv{c_g}{t}
    &= i \frac{q \matrixel{g}{\vu{x}}{e} \cdot \vb{E}_0}{2 \hbar} \exp\!\big( i \omega t \!-\! i \omega_0 t \big) \: c_e
    \\
    \dv{c_e}{t}
    &= i \frac{q \matrixel{e}{\vu{x}}{g} \cdot \vb{E}_0}{2 \hbar} \exp\!\big(\!-\! i \omega t \!+\! i \omega_0 t \big) \: c_g
\end{aligned}$$

We want to rearrange these equations a bit.
Therefore, we split the electric field $\vb{E}$ like so,
where the amplitudes $\vb{E}_0^{-}$ and $\vb{E}_0^{+}$ may be slowly varying:

$$\begin{aligned}
    \vb{E}(t)
    = \vb{E}^{-}(t) + \vb{E}^{+}(t)
    = \vb{E}_0^{-} \exp(i \omega t) + \vb{E}_0^{+} \exp(-i \omega t)
\end{aligned}$$

Since $\vb{E}$ is real, $\vb{E}_0^{+} = (\vb{E}_0^{-})^*$.
Similarly, we define the transition dipole moment $\vb{p}_0^{-}$:

$$\begin{aligned}
    \vb{p}_0^{-}
    \equiv q \matrixel{e}{\vu{x}}{g}
    \qquad \qquad
    \vb{p}_0^{+}
    \equiv (\vb{p}_0^{-})^*
    = q \matrixel{g}{\vu{x}}{e}
\end{aligned}$$

With these, the equations for $c_g$ and $c_e$ can be rewritten as shown below.
Note that $\vb{E}^{-}$ and $\vb{E}^{+}$ include the driving plane wave, and the
[rotating wave approximation](/know/concept/rotating-wave-approximation/) is still made:

$$\begin{aligned}
    \dv{c_g}{t}
    &= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \exp(- i \omega_0 t) \: c_e
    \\
    \dv{c_e}{t}
    &= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \exp(i \omega_0 t) \: c_g
\end{aligned}$$


## Optical Bloch equations

For $\Ket{\Psi}$ as defined above,
the corresponding pure [density operator](/know/concept/density-operator/)
$\hat{\rho}$ is as follows:

$$\begin{aligned}
    \hat{\rho}
    = \Ket{\Psi} \Bra{\Psi}
    =
    \begin{bmatrix}
        c_e c_e^* & c_e c_g^* \exp(-i \omega_0 t) \\
        c_g c_e^* \exp(i \omega_0 t) & c_g c_g^*
    \end{bmatrix}
    \equiv
    \begin{bmatrix}
        \rho_{ee} & \rho_{eg} \\
        \rho_{ge} & \rho_{gg}
    \end{bmatrix}
\end{aligned}$$

Where $\omega_0 \equiv (E_e \!-\! E_g) / \hbar$ is the resonance frequency.
We take the $t$-derivative of the matrix elements,
and insert the equations for $c_g$ and $c_e$:

$$\begin{aligned}
    \dv{\rho_{gg}}{t}
    &= \dv{c_g}{t} c_g^* + c_g \dv{c_g^*}{t}
    \\
    &= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \exp(- i \omega_0 t) \: c_e c_g^*
    - \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \exp(i \omega_0 t) \: c_g c_e^*
    \\
    \dv{\rho_{ee}}{t}
    &= \dv{c_e}{t} c_e^* + c_e \dv{c_e^*}{t}
    \\
    &= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \exp(i \omega_0 t) \: c_g c_e^*
    - \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \exp(- i \omega_0 t) \: c_e c_g^*
    \\
    \dv{\rho_{ge}}{t}
    &= \dv{c_g}{t} c_e^* \exp(i \omega_0 t) + c_g \dv{c_e^*}{t} \exp(i \omega_0 t) + i \omega_0 c_g c_e^* \exp(i \omega_0 t)
    \\
    &= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \: c_e c_e^*
    - \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \: c_g c_g^*
    + i \omega_0 c_g c_e^* \exp(i \omega_0 t)
    \\
    \dv{\rho_{eg}}{t}
    &= \dv{c_e}{t} c_g^* \exp(-i \omega_0 t) + c_e \dv{c_g^*}{t} \exp(-i \omega_0 t) - i \omega_0 c_e c_g^* \exp(- i \omega_0 t)
    \\
    &= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \: c_g c_g^*
    - \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \: c_e c_e^*
    - i \omega_0 c_e c_g^* \: \exp(- i \omega_0 t)
\end{aligned}$$

Recognizing the density matrix elements allows us
to reduce these equations to:

$$\begin{aligned}
    \dv{\rho_{gg}}{t}
    &= \frac{i}{\hbar} \Big( \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} - \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} \Big)
    \\
    \dv{\rho_{ee}}{t}
    &= \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} - \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} \Big)
    \\
    \dv{\rho_{ge}}{t}
    &= i \omega_0 \rho_{ge} + \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \big( \rho_{ee} - \rho_{gg} \big)
    \\
    \dv{\rho_{eg}}{t}
    &= - i \omega_0 \rho_{eg} + \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \big( \rho_{gg} - \rho_{ee} \big)
\end{aligned}$$

These equations are correct if nothing else is affecting $\hat{\rho}$.
But in practice, these quantities decay due to various processes,
e.g. spontaneous emission (see [Einstein coefficients](/know/concept/einstein-coefficients/)).

Let $\rho_{ee}$ decays with rate $\gamma_e$.
Since the total probability $\rho_{ee} + \rho_{gg} = 1$,
we thus have:

$$\begin{aligned}
    \Big( \dv{\rho_{ee}}{t} \Big)_{e}
    = - \gamma_e \rho_{ee}
    \quad \implies \quad
    \Big( \dv{\rho_{gg}}{t} \Big)_{e}
    = \gamma_e \rho_{ee}
\end{aligned}$$

Meanwhile, for whatever reason,
let $\rho_{gg}$ decay into $\rho_{ee}$ with rate $\gamma_g$:

$$\begin{aligned}
    \Big( \dv{\rho_{gg}}{t} \Big)_{g}
    = - \gamma_g \rho_{gg}
    \quad \implies \quad
    \Big( \dv{\rho_{gg}}{t} \Big)_{g}
    = \gamma_g \rho_{gg}
\end{aligned}$$

And finally, let the diagonal (perpendicular) matrix elements
both decay with rate $\gamma_\perp$:

$$\begin{aligned}
    \Big( \dv{\rho_{eg}}{t} \Big)_{\perp}
    = - \gamma_\perp \rho_{eg}
    \qquad \qquad
    \Big( \dv{\rho_{ge}}{t} \Big)_{\perp}
    = - \gamma_\perp \rho_{ge}
\end{aligned}$$

Putting everything together,
we arrive at the **optical Bloch equations** governing $\hat{\rho}$:

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            \dv{\rho_{gg}}{t}
            &= \gamma_e \rho_{ee} - \gamma_g \rho_{gg}
            + \frac{i}{\hbar} \Big( \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} - \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} \Big)
            \\
            \dv{\rho_{ee}}{t}
            &=  \gamma_g \rho_{gg} - \gamma_e \rho_{ee}
            + \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} - \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} \Big)
            \\
            \dv{\rho_{ge}}{t}
            &= - \Big( \gamma_\perp - i \omega_0 \Big) \rho_{ge}
            + \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \Big( \rho_{ee} - \rho_{gg} \Big)
            \\
            \dv{\rho_{eg}}{t}
            &= - \Big( \gamma_\perp + i \omega_0 \Big) \rho_{eg}
            + \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \Big( \rho_{gg} - \rho_{ee} \Big)
        \end{aligned}
    }
\end{aligned}$$

Many authors simplify these equations a bit by choosing
$\gamma_g = 0$ and $\gamma_\perp = \gamma_e / 2$.


## Including Maxwell's equations

This two-level system has a dipole moment $\vb{p}$ as follows,
where we use [Laporte's selection rule](/know/concept/selection-rules/)
to remove diagonal terms, by assuming that
the electron's orbitals are odd or even:

$$\begin{aligned}
    \vb{p}
    &= \matrixel{\Psi}{\hat{\vb{p}}}{\Psi}
    \\
    &= q \Big( c_g c_g^* \matrixel{g}{\vu{x}}{g} + c_e c_e^* \matrixel{e}{\vu{x}}{e}
    + c_g c_e^* \matrixel{e}{\vu{x}}{g} \exp(i \omega_0 t) + c_e c_g^* \matrixel{g}{\vu{x}}{e} \exp(-i \omega_0 t) \Big)
    \\
    &= q \Big( \rho_{ge} \matrixel{e}{\vu{x}}{g} + \rho_{eg} \matrixel{g}{\vu{x}}{e} \Big)
    = \vb{p}_0^{-} \rho_{ge}(t) + \vb{p}_0^{+} \rho_{eg}(t)
    \equiv \vb{p}^{-}(t) + \vb{p}^{+}(t)
\end{aligned}$$

Where we have split $\vb{p}$ analogously to $\vb{E}$
by defining $\vb{p}^{+} \equiv \vb{p}_0^{+} \rho_{eg}$.
Its equation of motion can then be found from the optical Bloch equations:

$$\begin{aligned}
    \dv{\vb{p}^{+}}{t}
    = \vb{p}_0^{+} \dv{\rho_{eg}}{t}
    = - \vb{p}_0^{+} \Big( \gamma_\perp + i \omega_0 \Big) \rho_{eg}
    + \frac{i}{\hbar} \vb{p}_0^{+} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \Big( \rho_{gg} - \rho_{ee} \Big)
\end{aligned}$$

Some authors do not bother multiplying $\rho_{ge}$ by $\vb{p}_0^{+}$.
In any case, we arrive at:

$$\begin{aligned}
    \boxed{
        \dv{\vb{p}^{+}}{t}
        = - \Big( \gamma_\perp + i \omega_0 \Big) \vb{p}^{+}
        - \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \vb{p}_0^{+} d
    }
\end{aligned}$$

Where we have defined the **population inversion** $d \in [-1, 1]$ as follows,
which quantifies the electron's excitedness:

$$\begin{aligned}
    d
    \equiv \rho_{ee} - \rho_{gg}
\end{aligned}$$

From the optical Bloch equations,
we find its equation of motion to be:

$$\begin{aligned}
    \dv{d}{t}
    &= \dv{\rho_{ee}}{t} - \dv{\rho_{gg}}{t}
    = 2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee}
    + \frac{i 2}{\hbar} \Big( \vb{p}^{-} \cdot \vb{E}^{+} - \vb{p}^{+} \cdot \vb{E}^{-} \Big)
\end{aligned}$$

We can rewrite the first two terms in the following intuitive form,
which describes a decay with
rate $\gamma_\parallel \equiv \gamma_g + \gamma_e$
towards an equilbrium $d_0$:

$$\begin{aligned}
    2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee}
    = \gamma_\parallel (d_0 - d)
    \qquad \qquad
    d_0
    \equiv \frac{\gamma_g - \gamma_e}{\gamma_g + \gamma_e}
\end{aligned}$$

<div class="accordion">
<input type="checkbox" id="proof-inversion-decay"/>
<label for="proof-inversion-decay">Proof</label>
<div class="hidden">
<label for="proof-inversion-decay">Proof.</label>
We introduce some new terms, and reorganize the expression:

$$\begin{aligned}
    2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee}
    &= 2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee}
    + \gamma_g \rho_{ee} - \gamma_g \rho_{ee}
    + \gamma_e \rho_{gg} - \gamma_e \rho_{gg}
    \\
    &= \gamma_g (\rho_{gg} + \rho_{ee}) - \gamma_e (\rho_{gg} + \rho_{ee})
    + \gamma_g (\rho_{gg} - \rho_{ee}) + \gamma_e (\rho_{gg} - \rho_{ee})
\end{aligned}$$

Since the total probability $\rho_{gg} + \rho_{ee} = 1$,
and $d \equiv \rho_{ee} - \rho_{gg}$, this reduces to:

$$\begin{aligned}
    2 \gamma_g \rho_{gg} - 2 \gamma_e \rho_{ee}
    &= \gamma_g - \gamma_e - (\gamma_g + \gamma_e) d
    \\
    &= (\gamma_g + \gamma_e) \Big( \frac{\gamma_g - \gamma_e}{\gamma_g + \gamma_e} - d \Big)
    \\
    &= \gamma_\parallel ( d_0 - d )
\end{aligned}$$
</div>
</div>

With this, the equation for the population inversion $d$
takes the following final form:

$$\begin{aligned}
    \boxed{
        \dv{d}{t}
        = \gamma_\parallel (d_0 - d) + \frac{i 2}{\hbar} \Big( \vb{p}^{-} \cdot \vb{E}^{+} - \vb{p}^{+} \cdot \vb{E}^{-} \Big)
    }
\end{aligned}$$

Finally, we would like a relation between the polarization
and the electric field $\vb{E}$,
for which we turn to [Maxwell's equations](/know/concept/maxwells-equations/).
We start from Faraday's law,
and split $\vb{B} = \mu_0 (\vb{H} + \vb{M})$:

$$\begin{aligned}
    \nabla \cross \vb{E}
    = - \pdv{\vb{B}}{t}
    = - \mu_0 \pdv{\vb{H}}{t} - \mu_0 \pdv{\vb{M}}{t}
\end{aligned}$$

We assume that there is no magnetization $\vb{M} = 0$.
Then we we take the curl of both sides,
and replace $\nabla \cross \vb{H}$ with Ampère's circuital law:

$$\begin{aligned}
    \nabla \cross \big( \nabla \cross \vb{E} \big)
    = - \mu_0 \pdv{}{t} \big( \nabla \cross \vb{H} \big)
    = - \mu_0 \pdv{}{t} \Big( \vb{J}_\mathrm{free} + \pdv{\vb{D}}{t} \Big)
\end{aligned}$$

Inserting the definition $\vb{D} = \varepsilon_0 \vb{E} + \vb{P}$
together with Ohm's law $\vb{J}_\mathrm{free} = \sigma \vb{E}$ yields:

$$\begin{aligned}
    \nabla \cross \big( \nabla \cross \vb{E} \big)
    = - \mu_0 \sigma \pdv{\vb{E}}{t} - \mu_0 \varepsilon_0 \pdvn{2}{\vb{E}}{t} - \mu_0 \pdvn{2}{\vb{P}}{t}
\end{aligned}$$

Where $\sigma$ is the active material's conductivity, if any;
almost all authors assume $\sigma = 0$.

Recall that we are describing the dynamics of a two-level system.
In reality, such a system (e.g. a quantum dot)
is suspended in a passive background medium,
which reacts with a polarization $\vb{P}_\mathrm{med}$
to the electric field $\vb{E}$.
If the medium is linear, i.e. $\vb{P}_\mathrm{med} = \varepsilon_0 \chi \vb{E}$,
then:

$$\begin{aligned}
    \mu_0 \pdvn{2}{\vb{P}}{t}
    &= - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t}
    - \mu_0 \varepsilon_0 \pdvn{2}{\vb{E}}{t} - \mu_0 \pdvn{2}{\vb{P}_\mathrm{med}}{t}
    \\
    &= - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t}
    - \mu_0 \pdvn{2}{}{t}\Big( \varepsilon_0 \vb{E} + \varepsilon_0 \chi \vb{E} \Big)
    \\
    &= - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t}
    - \mu_0 \varepsilon_0 \varepsilon_r \pdvn{2}{\vb{E}}{t}
\end{aligned}$$

Where $\varepsilon_r \equiv 1 + \chi_e$ is the medium's relative permittivity.
The speed of light $c^2 = 1 / (\mu_0 \varepsilon_0)$,
and the refractive index $n^2 = \mu_r \varepsilon_r$,
where $\mu_r = 1$ due to our assumption that $\vb{M} = 0$, so:

$$\begin{aligned}
    \boxed{
        \mu_0 \pdvn{2}{\vb{P}}{t}
        = - \nabla \cross \big( \nabla \cross \vb{E} \big) - \mu_0 \sigma \pdv{\vb{E}}{t} - \frac{n^2}{c^2} \pdvn{2}{\vb{E}}{t}
    }
\end{aligned}$$

$\vb{E}$ and $\vb{P}$ can trivially be replaced by $\vb{E}^{+}$ and $\vb{P}^{+}$.
It is also simple to convert $\vb{p}^{+}$ and $d$
into the macroscopic $\vb{P}^{+}$ and total $D$
by summing over all two-level systems in the medium:

$$\begin{aligned}
    \vb{P}^{+}(\vb{x}, t)
    &= \sum_{\nu} \vb{p}^{+}_\nu \: \delta(\vb{x} - \vb{x}_\nu)
    \\
    D(\vb{x}, t)
    &= \sum_{\nu} d_\nu \: \delta(\vb{x} - \vb{x}_\nu)
\end{aligned}$$

We thus arrive at the **Maxwell-Bloch equations**,
which are the foundation of laser theory:

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            \mu_0 \pdvn{2}{\vb{P}^{+}}{t}
            &= - \nabla \cross \nabla \cross \vb{E}^{+} - \mu_0 \sigma \pdv{\vb{E}^{+}}{t} - \frac{n^2}{c^2} \pdvn{2}{\vb{E}^{+}}{t}
            \\
            \pdv{\vb{P}^{+}}{t}
            &= - \Big( \gamma_\perp + i \omega_0 \Big) \vb{P}^{+}
            - \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \Big) \vb{p}_0^{+} D
            \\
            \pdv{D}{t}
            &= \gamma_\parallel (D_0 - D) + \frac{i 2}{\hbar} \Big( \vb{P}^{-} \cdot \vb{E}^{+} - \vb{P}^{+} \cdot \vb{E}^{-} \Big)
        \end{aligned}
    }
\end{aligned}$$



## References
1.  F. Kärtner,
    [Ultrafast optics: lecture notes](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-977-ultrafast-optics-spring-2005/lecture-notes/),
    2005, MIT.
2.  H. Haken,
    *Light: volume 2: laser light dynamics*,
    1985, North-Holland.
3.  H.J. Metcalf, P. van der Straten,
    *Laser cooling and trapping*,
    1999, Springer.