1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
---
title: "Maxwell's equations"
sort_title: "Maxwell's equations"
date: 2021-09-09
categories:
- Physics
- Electromagnetism
layout: "concept"
---
In physics, **Maxwell's equations** govern
all macroscopic electromagnetism,
and notably lead to the
[electromagnetic wave equation](/know/concept/electromagnetic-wave-equation/),
which describes the existence of light.
## Gauss' law
**Gauss' law** states that the electric flux $$\Phi_E$$ through
a closed surface $$S(V)$$ is equal to the total charge $$Q$$
contained in the enclosed volume $$V$$,
divided by the vacuum permittivity $$\varepsilon_0$$:
$$\begin{aligned}
\Phi_E
= \oint_{S(V)} \vb{E} \cdot \dd{\vb{A}}
= \frac{1}{\varepsilon_0} \int_{V} \rho \dd{V}
= \frac{Q}{\varepsilon_0}
\end{aligned}$$
Where $$\vb{E}$$ is the [electric field](/know/concept/electric-field/),
and $$\rho$$ is the charge density in $$V$$.
Gauss' law is usually more useful when written in its vector form,
which can be found by applying the divergence theorem
to the surface integral above.
It states that the divergence of $$\vb{E}$$ is proportional to $$\rho$$:
$$\begin{aligned}
\boxed{
\nabla \cdot \vb{E} = \frac{\rho}{\varepsilon_0}
}
\end{aligned}$$
This law can just as well be expressed for
the displacement field $$\vb{D}$$
and polarization density $$\vb{P}$$.
We insert $$\vb{E} = (\vb{D} - \vb{P}) / \varepsilon_0$$
into Gauss' law for $$\vb{E}$$, multiplied by $$\varepsilon_0$$:
$$\begin{aligned}
\rho
= \nabla \cdot \big( \vb{D} - \vb{P} \big)
= \nabla \cdot \vb{D} - \nabla \cdot \vb{P}
\end{aligned}$$
To proceed, we split the net charge density $$\rho$$
into a "free" part $$\rho_\mathrm{free}$$
and a "bound" part $$\rho_\mathrm{bound}$$,
respectively corresponding to $$\vb{D}$$ and $$\vb{P}$$,
such that $$\rho = \rho_\mathrm{free} + \rho_\mathrm{bound}$$.
This yields:
$$\begin{aligned}
\boxed{
\nabla \cdot \vb{D} = \rho_{\mathrm{free}}
}
\qquad \quad
\boxed{
\nabla \cdot \vb{P} = - \rho_{\mathrm{bound}}
}
\end{aligned}$$
By integrating over an arbitrary volume $$V$$
we can get integral forms of these equations:
$$\begin{aligned}
\Phi_D
&= \oint_{S(V)} \vb{D} \cdot \dd{\vb{A}}
= \int_{V} \rho_{\mathrm{free}} \dd{V}
= Q_{\mathrm{free}}
\\
\Phi_P
&= \oint_{S(V)} \vb{P} \cdot \dd{\vb{A}}
= - \int_{V} \rho_{\mathrm{bound}} \dd{V}
= - Q_{\mathrm{bound}}
\end{aligned}$$
## Gauss' law for magnetism
**Gauss' law for magnetism** states that magnetic flux $$\Phi_B$$
through a closed surface $$S(V)$$ is zero.
In other words, all magnetic field lines entering
the volume $$V$$ must leave it too:
$$\begin{aligned}
\Phi_B
= \oint_{S(V)} \vb{B} \cdot \dd{\vb{A}}
= 0
\end{aligned}$$
Where $$\vb{B}$$ is the [magnetic field](/know/concept/magnetic-field/).
Thanks to the divergence theorem,
this can equivalently be stated in vector form as follows:
$$\begin{aligned}
\boxed{
\nabla \cdot \vb{B} = 0
}
\end{aligned}$$
A consequence of this law is the fact that magnetic monopoles cannot exist,
i.e. there is no such thing as "magnetic charge",
in contrast to electric charge.
## Faraday's law of induction
**Faraday's law of induction** states that a magnetic field $$\vb{B}$$
that changes with time will induce an electric field $$E$$.
Specifically, the change in magnetic flux through a non-closed surface $$S$$
creates an electromotive force around the contour $$C(S)$$.
This is written as:
$$\begin{aligned}
\oint_{C(S)} \vb{E} \cdot \dd{\vb{l}}
= - \dv{}{t}\int_{S} \vb{B} \cdot \dd{\vb{A}}
\end{aligned}$$
By using Stokes' theorem on the contour integral,
the vector form of this law is found to be:
$$\begin{aligned}
\boxed{
\nabla \times \vb{E} = - \pdv{\vb{B}}{t}
}
\end{aligned}$$
## Ampère's circuital law
**Ampère's circuital law**, with Maxwell's correction,
states that a magnetic field $$\vb{B}$$
can be induced along a contour $$C(S)$$ by two things:
a current density $$\vb{J}$$ through the enclosed surface $$S$$,
and a change of the electric field flux $$\Phi_E$$ through $$S$$:
$$\begin{aligned}
\oint_{C(S)} \vb{B} \cdot d\vb{l}
= \mu_0 \Big( \int_S \vb{J} \cdot d\vb{A} + \varepsilon_0 \dv{}{t}\int_S \vb{E} \cdot d\vb{A} \Big)
\end{aligned}$$
$$\begin{aligned}
\boxed{
\nabla \times \vb{B} = \mu_0 \Big( \vb{J} + \varepsilon_0 \pdv{\vb{E}}{t} \Big)
}
\end{aligned}$$
Where $$\mu_0$$ is the vacuum permeability.
This relation also exists for the "bound" fields $$\vb{H}$$ and $$\vb{D}$$,
and for $$\vb{M}$$ and $$\vb{P}$$.
We insert $$\vb{B} = \mu_0 (\vb{H} + \vb{M})$$
and $$\vb{E} = (\vb{D} - \vb{P})/\varepsilon_0$$
into Ampère's law, after dividing it by $$\mu_0$$ for simplicity:
$$\begin{aligned}
\nabla \cross \big( \vb{H} + \vb{M} \big)
&= \vb{J} + \pdv{}{t}\big( \vb{D} - \vb{P} \big)
\end{aligned}$$
To proceed, we split the net current density $$\vb{J}$$
into a "free" part $$\vb{J}_\mathrm{free}$$
and a "bound" part $$\vb{J}_\mathrm{bound}$$,
such that $$\vb{J} = \vb{J}_\mathrm{free} + \vb{J}_\mathrm{bound}$$.
This leads us to:
$$\begin{aligned}
\boxed{
\nabla \times \vb{H} = \vb{J}_{\mathrm{free}} + \pdv{\vb{D}}{t}
}
\qquad \quad
\boxed{
\nabla \times \vb{M} = \vb{J}_{\mathrm{bound}} - \pdv{\vb{P}}{t}
}
\end{aligned}$$
By integrating over an arbitrary surface $$S$$
we can get integral forms of these equations:
$$\begin{aligned}
\oint_{C(S)} \vb{H} \cdot d\vb{l}
&= \int_S \vb{J}_{\mathrm{free}} \cdot \dd{\vb{A}} + \dv{}{t}\int_S \vb{D} \cdot \dd{\vb{A}}
\\
\oint_{C(S)} \vb{M} \cdot d\vb{l}
&= \int_S \vb{J}_{\mathrm{bound}} \cdot \dd{\vb{A}} - \dv{}{t}\int_S \vb{P} \cdot \dd{\vb{A}}
\end{aligned}$$
Note that $$\vb{J}_\mathrm{bound}$$ can be split into
the **magnetization current density** $$\vb{J}_M = \nabla \cross \vb{M}$$
and the **polarization current density** $$\vb{J}_P = \ipdv{\vb{P}}{t}$$:
$$\begin{aligned}
\vb{J}_\mathrm{bound}
= \vb{J}_M + \vb{J}_P
= \nabla \cross \vb{M} + \pdv{\vb{P}}{t}
\end{aligned}$$
## Redundancy of Gauss' laws
In fact, both of Gauss' laws are redundant,
because they are already implied by Faraday's and Ampère's laws.
Suppose we take the divergence of Faraday's law:
$$\begin{aligned}
0
= \nabla \cdot \nabla \cross \vb{E}
= - \nabla \cdot \pdv{\vb{B}}{t}
= - \pdv{}{t}(\nabla \cdot \vb{B})
\end{aligned}$$
Since the divergence of a curl is always zero,
the right-hand side must vanish.
We know that $$\vb{B}$$ can vary in time,
so our only option to satisfy this is to demand that $$\nabla \cdot \vb{B} = 0$$.
We thus arrive arrive at Gauss' law for magnetism from Faraday's law.
The same technique works for Ampère's law.
Taking its divergence gives us:
$$\begin{aligned}
0
= \frac{1}{\mu_0} \nabla \cdot \nabla \cross \vb{B}
= \nabla \cdot \vb{J} + \varepsilon_0 \pdv{}{t}(\nabla \cdot \vb{E})
\end{aligned}$$
We integrate this over an arbitrary volume $$V$$,
and apply the divergence theorem:
$$\begin{aligned}
0
&= \int_V \nabla \cdot \vb{J} \dd{V} + \pdv{}{t}\int_V \varepsilon_0 \nabla \cdot \vb{E} \dd{V}
\\
&= \oint_S \vb{J} \cdot \dd{S} + \pdv{}{t}\int_V \varepsilon_0 \nabla \cdot \vb{E} \dd{V}
\end{aligned}$$
The first integral represents the current (charge flux)
through the surface of $$V$$.
Electric charge is not created or destroyed,
so the second integral *must* be the total charge in $$V$$:
$$\begin{aligned}
Q
= \int_V \varepsilon_0 \nabla \cdot \vb{E} \dd{V}
\quad \implies \quad
\nabla \cdot \vb{E}
= \frac{\rho}{\varepsilon_0}
\end{aligned}$$
And we thus arrive at Gauss' law from Ampère's law and charge conservation.
|