summaryrefslogtreecommitdiff
path: root/source/know/concept/no-cloning-theorem/index.md
blob: 9c8b11da9c0af8287af96bb30cc5085eaff5d92d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
title: "No-cloning theorem"
sort_title: "No-cloning theorem"
date: 2021-03-06
categories:
- Physics
- Quantum mechanics
- Quantum information
layout: "concept"
---

In quantum mechanics, the **no-cloning theorem** states
there is no general way to make copies of an arbitrary quantum state $$\ket{\psi}$$.
This has profound implications for quantum information.

To prove this theorem, let us pretend that a machine exists
that can do just that: copy arbitrary quantum states.
Given an input $$\ket{\psi}$$ and a blank $$\ket{?}$$,
this machines turns $$\ket{?}$$ into $$\ket{\psi}$$:

$$\begin{aligned}
    \ket{\psi} \ket{?}
    \:\:\longrightarrow\:\:
    \ket{\psi} \ket{\psi}
\end{aligned}$$

We can use this device to make copies of the basis vectors $$\ket{0}$$ and $$\ket{1}$$:

$$\begin{aligned}
    \ket{0} \ket{?}
    \:\:\longrightarrow\:\:
    \ket{0} \ket{0}
    \qquad \qquad
    \ket{1} \ket{?}
    \:\:\longrightarrow\:\:
    \ket{1} \ket{1}
\end{aligned}$$

If we feed this machine a superposition $$\ket{\psi} = \alpha \ket{0} + \beta \ket{1}$$,
we *want* the following behavior:

$$\begin{aligned}
    \Big( \alpha \ket{0} + \beta \ket{1} \Big) \ket{?}
    \:\:\longrightarrow\:\:
    &\Big( \alpha \ket{0} + \beta \ket{1} \Big) \Big( \alpha \ket{0} + \beta \ket{1} \Big)
    \\
    &= \Big( \alpha^2 \ket{0} \ket{0} + \alpha \beta \ket{0} \ket{1} + \alpha \beta \ket{1} \ket{0} + \beta^2 \ket{1} \ket{1} \Big)
\end{aligned}$$

Note the appearance of the cross-terms with a factor of $$\alpha \beta$$.
The problem is that the fundamental linearity of quantum mechanics
dictates different behaviour:

$$\begin{aligned}
    \Big( \alpha \ket{0} + \beta \ket{1} \Big) \ket{?}
    = \alpha \ket{0} \ket{?} + \beta \ket{1} \ket{?}
    \:\:\longrightarrow\:\:
    \alpha \ket{0} \ket{0} + \beta \ket{1} \ket{1}
\end{aligned}$$

This is clearly not the same as before: we have a contradiction,
which implies that such a general cloning machine cannot exist.



## References
1.  N. Brunner,
    *Quantum information theory: lecture notes*,
    2019, unpublished.
2.  J.B. Brask,
    *Quantum information: lecture notes*,
    2021, unpublished.