summaryrefslogtreecommitdiff
path: root/source/know/concept/nonlinear-schrodinger-equation/index.md
blob: 506600ec54efc94c6081fb4cfe2681f909b88c7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
---
title: "Nonlinear Schrödinger equation"
sort_title: "Nonlinear Schrodinger equation" # sic
date: 2024-09-15
categories:
- Physics
- Mathematics
- Fiber optics
- Nonlinear optics
layout: "concept"
---

The **nonlinear Schrödinger (NLS) equation**
is a nonlinear 1+1D partial differential equation
that appears in many areas of physics.
It is used to describe pulses in fiber optics (as derived below),
waves over deep water, local opening of DNA chains, and more.
It is often given as:

$$\begin{aligned}
    \boxed{
        i \pdv{u}{z} + \pdvn{2}{u}{t} + |u|^2 u
        = 0
    }
\end{aligned}$$

Which is its dimensionless form,
governing the envelope $$u(z, t)$$
of an underlying carrier wave,
with $$t$$ being the transverse coordinate.
Notably, the NLS equation has **soliton** solutions,
where $$u$$ maintains its shape over great distances.



## Derivation

We only consider fiber optics here;
the NLS equation can be derived in many other ways.
We start from the most general form of the
[electromagnetic wave equation](/know/concept/electromagnetic-wave-equation/),
after assuming the medium cannot be magnetized ($$\mu_r = 1$$):

$$\begin{aligned}
    \nabla \cross \big( \nabla \cross \vb{E} \big)
    = - \mu_0 \varepsilon_0 \pdvn{2}{\vb{E}}{t} - \mu_0 \pdvn{2}{\vb{P}}{t}
\end{aligned}$$

Using the vector identity
$$\nabla \cross (\nabla \cross \vb{E}) = \nabla (\nabla \cdot \vb{E}) - \nabla^2 \vb{E}$$
and [Gauss's law](/know/concept/maxwells-equations/) $$\nabla \cdot \vb{E} = 0$$,
and splitting the polarization $$\vb{P}$$
into linear and nonlinear contributions
$$\vb{P}_\mathrm{L}$$ and $$\vb{P}_\mathrm{NL}$$:

$$\begin{aligned}
    \nabla^2 \vb{E} - \mu_0 \varepsilon_0 \pdvn{2}{\vb{E}}{t}
    &= \mu_0 \pdvn{2}{\vb{P}_\mathrm{L}}{t} + \mu_0 \pdvn{2}{\vb{P}_\mathrm{NL}}{t}
\end{aligned}$$

In general, $$\vb{P}_\mathrm{L}$$ is given by the convolution
of $$\vb{E}$$ with a second-rank response tensor $$\chi^{(1)}$$:

$$\begin{aligned}
    \vb{P}_\mathrm{L}(\vb{r}, t)
    = \varepsilon_0 \int_{-\infty}^\infty \chi^{(1)}(t - t') \cdot \vb{E}(\vb{r}, t') \dd{t'}
\end{aligned}$$

In $$\vb{P}_\mathrm{NL}$$ we only include third-order nonlinearities,
since higher orders are usually negligible,
and second-order nonlinear effects only exist in very specific crystals.
So we "only" need to deal with a fourth-rank response tensor $$\chi^{(3)}$$:

$$\begin{aligned}
    \vb{P}_\mathrm{NL}(\vb{r}, t)
    = \varepsilon_0 \iiint_{-\infty}^\infty \chi^{(3)}(t \!-\! t_1, t \!-\! t_2, t \!-\! t_3)
    \:\vdots\: \vb{E}(\vb{r}, t_1) \vb{E}(\vb{r}, t_2) \vb{E}(\vb{r}, t_3) \dd{t_1} \dd{t_2} \dd{t_3}
\end{aligned}$$

In practice, two phenomena contribute to $$\chi^{(3)}$$:
the *Kerr effect* due to electrons' response to $$\vb{E}$$,
and *Raman scattering* due to nuclei's response,
which is slower because of their mass.
But if the light pulses are sufficiently long (>1ps in silica),
both effects can be treated as fast, so:

$$\begin{aligned}
    \chi^{(3)}(t \!-\! t_1, t \!-\! t_2, t \!-\! t_3)
    &= \chi^{(3)} \delta(t - t_1) \delta(t - t_2) \delta(t - t_3)
\end{aligned}$$

Where $$\delta$$ is the [Dirac delta function](/know/concept/dirac-delta-function/).
To keep things simple,
we consider linearly $$x$$-polarized light $$\vb{E} = \vu{x} |\vb{E}|$$,
such that the tensor can be replaced with its scalar element $$\chi^{(3)}_{xxxx}$$.
Then:

$$\begin{aligned}
    \vb{P}_\mathrm{NL}
    = \varepsilon_0 \chi^{(3)}_{xxxx} \big( \vb{E} \cdot \vb{E} \big) \vb{E}
\end{aligned}$$

For the same reasons, the linear polarization is reduced to:

$$\begin{aligned}
    \vb{P}_\mathrm{L}
    &= \varepsilon_0 \chi^{(1)}_{xx} \vb{E}
\end{aligned}$$

Next, we decompose $$\vb{E}$$ as follows,
consisting of a carrier wave $$e^{-i \omega_0 t}$$
at a constant frequency $$\omega_0$$,
modulated by an envelope $$E$$
that is assumed to be slowly-varying compared to the carrier,
plus the complex conjugate $$E^* e^{i \omega_0 t}$$:

$$\begin{aligned}
    \vb{E}(\vb{r}, t)
    &= \vu{x} \frac{1}{2} \Big( E(\vb{r}, t) e^{- i \omega_0 t} + E^*(\vb{r}, t) e^{i \omega_0 t} \Big)
\end{aligned}$$

Note that no generality has been lost in this step.
Inserting it into the polarizations:

$$\begin{aligned}
    \mathrm{P}_\mathrm{L}
    &= \vu{x} \frac{1}{2} \varepsilon_0 \chi^{(1)}_{xx} \Big( E(\vb{r}, t) e^{- i \omega_0 t} + E^*(\vb{r}, t) e^{i \omega_0 t} \Big)
    \\
    \vb{P}_\mathrm{NL}
    &= \vu{x} \frac{1}{8} \varepsilon_0 \chi^{(3)}_{xxxx} \Big( E e^{- i \omega_0 t} + E^* e^{i \omega_0 t} \Big)^{3}
    \\
    &= \vu{x} \frac{1}{8} \varepsilon_0 \chi^{(3)}_{xxxx}
    \Big( E^3 e^{- i 3 \omega_0 t} + 3 E^2 E^* e^{- i \omega_0 t} + 3 E (E^*)^2 e^{i \omega_0 t} + (E^*)^3 e^{i 3 \omega_0 t} \Big)
\end{aligned}$$

The terms with $$3 \omega_0$$ represent *third-harmonic generation*,
and only matter if the carrier is phase-matched
to the tripled wave, which is generally not the case,
so they can be ignored.
Now, if we decompose the polarizations in the same was as $$\vb{E}$$:

$$\begin{aligned}
    \vb{P}_\mathrm{L}(\vb{r}, t)
    &= \vu{x} \frac{1}{2} \Big( P_\mathrm{L}(\vb{r}, t) e^{- i \omega_0 t} + P_\mathrm{L}^*(\vb{r}, t) e^{i \omega_0 t} \Big)
    \\
    \vb{P}_\mathrm{NL}(\vb{r}, t)
    &= \vu{x} \frac{1}{2} \Big( P_\mathrm{NL}(\vb{r}, t) e^{- i \omega_0 t} + P_\mathrm{NL}^*(\vb{r}, t) e^{i \omega_0 t} \Big)
\end{aligned}$$

Then it is straightforward to see that their envelope functions are given by:

$$\begin{aligned}
    P_\mathrm{L}
    &= \varepsilon_0 \chi^{(1)}_{xx} E
    \\
    P_\mathrm{NL}
    &= \frac{3}{4} \varepsilon_0 \chi^{(3)}_{xxxx} |E|^2 E
\end{aligned}$$

The forward carrier $$e^{- i \omega_0 t}$$
and the backward carrier $$e^{i \omega_0 t}$$
can be regarded as separate channels,
which only interact via $$P_\mathrm{NL}$$.
From now on, we only consider the forward-propagating wave,
so all terms containing $$e^{i \omega_0 t}$$ are dropped;
by taking the complex conjugate of the resulting equations,
the backward-propagating counterparts can always be recovered,
so no information is really lost.
Therefore, the main wave equation becomes:

$$\begin{aligned}
    0
    &= \bigg(
        \nabla^2 E - \mu_0 \varepsilon_0 \pdvn{2}{E}{t} - \mu_0 \pdvn{2}{P_\mathrm{L}}{t} - \mu_0 \pdvn{2}{P_\mathrm{NL}}{t}
    \bigg) e^{-i \omega_0 t}
    \\
    &= \bigg(
        \nabla^2 E - \Big( 1 + \chi^{(1)}_{xx} + \frac{3}{4} \chi^{(3)}_{xxxx} |E|^2 \Big) \mu_0 \varepsilon_0 \pdvn{2}{E}{t}
    \bigg) e^{-i \omega_0 t}
\end{aligned}$$

Where we have used our assumption that $$E$$ is slowly-varying
to treat $$|E|^2$$ as a constant,
in order to move it outside the $$t$$-derivative.
We thus arrive at:

$$\begin{aligned}
    0
    &= \bigg( \nabla^2 E - \frac{\varepsilon_r}{c^2} \pdvn{2}{E}{t} \bigg) e^{-i \omega_0 t}
\end{aligned}$$

Where $$c = 1 / \sqrt{\mu_0 \varepsilon_0}$$ is the phase velocity of light in a vacuum,
and the relative permittivity $$\varepsilon_r$$ is defined as shown below.
Note that this is a mild abuse of notation,
since the symbol $$\varepsilon_r$$ is usually reserved for linear materials:

$$\begin{aligned}
    \varepsilon_r
    \equiv 1 + \chi^{(1)}_{xx} + \frac{3}{4} \chi^{(3)}_{xxxx} |E|^2
\end{aligned}$$

Next, we take the [Fourier transform](/know/concept/fourier-transform/)
$$t \to (\omega\!-\!\omega_0)$$ of the wave equation,
once again treating $$|E|^2$$ (inside $$\varepsilon_r$$) as a constant.
The constant $$s = \pm 1$$ is included here
to deal with the fact that different authors use different sign conventions:

$$\begin{aligned}
    0
    &= \hat{\mathcal{F}}\bigg\{ \nabla^2 E - \frac{\varepsilon_r}{c^2} \pdvn{2}{E}{t} \bigg\}
    \\
    &= \int_{-\infty}^\infty
    \bigg( \nabla^2 E - \frac{\varepsilon_r}{c^2} \pdvn{2}{E}{t} \bigg)
    e^{i s (\omega - \omega_0) t} \dd{t}
    \\
    &= \nabla^2 E + s^2 \frac{\varepsilon_r}{c^2} (\omega - \omega_0)^2 E
\end{aligned}$$

We use $$s^2 = 1$$ and define $$\Omega \equiv \omega - \omega_0$$
as the frequency shift relative to the carrier wave:

$$\begin{aligned}
    0
    &= \nabla^2 E + \frac{\Omega^2 \varepsilon_r}{c^2} E
\end{aligned}$$

This is a so-called *Helmholtz equation* in 3D,
which we will solve using separation of variables,
by assuming that its solution can be written as:

$$\begin{aligned}
    E(\vb{r}, \Omega)
    &= F(x, y) \: A(z, \Omega) \: e^{i \beta_0 z}
\end{aligned}$$

Where $$\beta_0$$ is the wavenumber of the carrier,
which will be determined later.
Inserting this ansatz into the Helmholtz equation yields:

$$\begin{aligned}
    0
    &= \Big( \pdvn{2}{F}{x} + \pdvn{2}{F}{y} \Big) A e^{i \beta_0 z}
    + \pdvn{2}{}{z} \Big( A e^{i \beta_0 z} \Big) F
    + \frac{\Omega^2 \varepsilon_r}{c^2} F A e^{i \beta_0 z}
    \\
    &= \bigg( \Big( \pdvn{2}{F}{x} + \pdvn{2}{F}{y} \Big) A
    + \Big( \pdvn{2}{A}{z} + 2 i \beta_0 \pdv{A}{z} - \beta_0^2 A \Big) F
    + \frac{\Omega^2 \varepsilon_r}{c^2} F A \bigg) e^{i \beta_0 z}
\end{aligned}$$

We divide by $$F A \: e^{i \beta_0 z}$$
and rearrange the terms in a specific way:

$$\begin{aligned}
    \Big( \pdvn{2}{F}{x} + \pdvn{2}{F}{y} \Big) \frac{1}{F} + \frac{\Omega^2 \varepsilon_r}{c^2}
    &= - 2 i \beta_0 \pdv{A}{z} \frac{1}{A} + \beta_0^2
\end{aligned}$$

Now all the $$x$$- and $$y$$-dependence is on the left,
and the $$z$$-dependence is on the right.
We have placed the $$\varepsilon_r$$-term on the left too
because it depends relatively strongly on $$(x, y)$$
to describe the fiber's internal structure,
and weakly on $$z$$ due to nonlinear effects.
Meanwhile, $$\beta_0$$ is on the right because that will lead to
a nicer equation for $$A$$ later.

Note that both sides are functions of $$\Omega$$.
Based on the aforementioned dependences,
in order for this equation to have a solution for all $$(x, y, z)$$,
there must exist a quantity $$\beta(\Omega)$$ that is constant in space,
such that we obtain two separated equations for $$F$$ and $$A$$:

$$\begin{aligned}
    \beta(\omega)
    &= \bigg( \pdvn{2}{F}{x} + \pdvn{2}{F}{y} \bigg) \frac{1}{F} + \frac{\omega^2 \varepsilon_r}{c^2}
    \\
    \beta(\Omega)
    &= - 2 i \beta_0 \pdv{A}{z} \frac{1}{A} + \beta_0^2
\end{aligned}$$

Note that we replaced $$\Omega$$ with $$\omega$$ in $$F$$'s equation
(and redefined $$\beta$$ and $$\varepsilon_r$$ accordingly).
This is not an innocent detail:
the idea is that $$\omega \sqrt{\varepsilon_r} / c$$
would be the light's wavenumber if it had not been trapped in a waveguide,
and that $$\beta$$ is the *confined* wavenumber,
also known as the **propagation constant**.
If we had kept $$\Omega$$,
the meaning of $$\beta$$ would not be so straightforward.

The difference between $$\beta(\omega)$$ and $$\beta_0$$
is simply that $$\beta_0 \equiv \beta(\omega_0)$$.
Our ansatz for separating the variables contained $$\beta_0$$,
such that the full carrier wave $$e^{i \beta_0 z - i \omega_0 t}$$ was represented
(with $$e^{- i \omega_0 t}$$ now hidden inside the Fourier transform).
But later, to properly describe how light behaves inside the fiber,
the full dispersion relation $$\beta(\omega)$$ will be needed.

Multiplying by $$F$$ and $$A$$,
we get the following set of equations,
implicitly coupled via $$\beta$$:

$$\begin{aligned}
    \boxed{
        \begin{aligned}
            0
            &= \pdvn{2}{F}{x} + \pdvn{2}{F}{y} + \bigg( \frac{\omega^2 \varepsilon_r}{c^2} - \beta^2 \bigg) F
            \\
            0
            &= 2 i \beta_0 \pdv{A}{z} + \big( \beta^2 - \beta_0^2 \big) A
        \end{aligned}
    }
\end{aligned}$$

The equation for $$F$$ must be solved first.
To do so, we treat the nonlinearity as a perturbation
to be neglected initially.
In other words, we first solve the following eigenvalue problem for $$\beta^2$$,
where $$n(x, y)$$ is the linear refractive index,
with $$n^2 = 1 + \Real\{\chi^{(1)}_{xx}\} \approx \varepsilon_r$$:

$$\begin{aligned}
    \pdvn{2}{F}{x} + \pdvn{2}{F}{y} + \bigg( \frac{\omega^2 n^2}{c^2} - \beta^2 \bigg) F
    = 0
\end{aligned}$$

This gives us the allowed values of $$\beta$$;
see [step-index fiber](/know/concept/step-index-fiber/) for an example solution.
Now we add the small index change $$\Delta{n}(x, y)$$ due to nonlinear effects:

$$\begin{aligned}
    \varepsilon_r
    = (n + \Delta{n})^2
    \approx n^2 + 2 n \: \Delta{n}
\end{aligned}$$

Then it can be shown using first-order
[perturbation theory](/know/concept/time-independent-perturbation-theory/)
that the eigenfunction $$F$$ is not really affected,
and the eigenvalue $$\beta^2$$ is shifted by $$\Delta(\beta^2)$$, given by:

$$\begin{aligned}
    \Delta(\beta^2)
    = \frac{2 \omega^2}{c^2} \frac{\displaystyle \iint_{-\infty}^\infty n \: \Delta{n} \: |F|^2 \dd{x} \dd{y}}
    {\displaystyle \iint_{-\infty}^\infty |F|^2 \dd{x} \dd{y}}
\end{aligned}$$

But we are more interested in the *wavenumber* shift $$\Delta{\beta}$$
than the *eigenvalue* shift $$\Delta(\beta^2)$$.
They are related to one another as follows:

$$\begin{aligned}
    \beta^2 + \Delta(\beta^2)
    = (\beta + \Delta{\beta})^2
    \approx \beta^2 + 2 \beta \Delta{\beta}
\end{aligned}$$

Furthermore, we assume that the fiber only consists of materials
with similar refractive indices, or in other words,
that it confines the light using only a small index difference,
in which case we can treat $$n$$ as a constant and move it outside the integral.
Then $$\Delta{\beta}$$ becomes:

$$\begin{aligned}
    \Delta{\beta}
    = \frac{\omega^2 n}{\beta c^2} \frac{\displaystyle \iint_{-\infty}^\infty \Delta{n} \: |F|^2 \dd{x} \dd{y}}
    {\displaystyle \iint_{-\infty}^\infty |F|^2 \dd{x} \dd{y}}
\end{aligned}$$

Recall that $$\beta$$ is the wavenumber of the confined mode:
by solving the unperturbed $$F$$-equation,
it can be shown that $$\beta$$'s value is somewhere
between the bulk wavenumbers of the fiber materials.
Since we just approximated $$n$$ as a constant,
this means that $$\omega n / c \approx \beta$$, leading us to
the general "final" form of $$\Delta{\beta}$$,
with all the arguments shown for clarity:

$$\begin{aligned}
    \boxed{
        \Delta{\beta}(\omega)
        = \frac{\omega}{c \mathcal{A}_\mathrm{mode}(\omega)}
        \iint_{-\infty}^\infty \Delta{n}(x, y, \omega) \: |F(x, y, \omega)|^2 \dd{x} \dd{y}
    }
\end{aligned}$$

Where we have defined the *mode area* $$\mathcal{A}_\mathrm{mode}$$ as shown below.
In order for $$\mathcal{A}_\mathrm{mode}$$ to be in units of area,
$$F$$ must be dimensionless,
and consequently $$A$$ has (SI) units of an electric field.

$$\begin{aligned}
    \mathcal{A}_\mathrm{mode}(\omega)
    \equiv \iint_{-\infty}^\infty |F(x, y, \omega)|^2 \dd{x} \dd{y}
\end{aligned}$$

Now we finally turn our attention to the equation for $$A$$.
Before perturbation, it was:

$$\begin{aligned}
    0
    &= 2 i \beta_0 \pdv{A}{z} + \big( \beta^2 - \beta_0^2 \big) A
\end{aligned}$$

Where $$\beta \approx \beta_0$$, so we can replace
$$\beta^2 - \beta_0^2$$ with $$2 \beta_0 (\beta - \beta_0)$$.
Also including $$\Delta{\beta}$$, we get:

$$\begin{aligned}
    0
    &= i \pdv{A}{z} + \big( \beta + \Delta{\beta} - \beta_0 \big) A
\end{aligned}$$

Usually, we do not know a full expression for $$\beta(\omega)$$,
so it makes sense to expand it around the carrier frequency $$\omega_0$$ as follows,
where $$\beta_n = \idvn{n}{\beta}{\omega} |_{\omega = \omega_0}$$:

$$\begin{aligned}
    \beta(\omega)
    &= \beta_0
    + (\omega - \omega_0) \beta_1
    + (\omega - \omega_0)^2 \frac{\beta_2}{2}
    + (\omega - \omega_0)^3 \frac{\beta_3}{6}
    + \: ...
\end{aligned}$$

Spectrally, the broader the light pulse, the more terms must be included.
Recall that earlier, in order to treat $$\chi^{(3)}$$ as instantaneous,
we already assumed a temporally broad
(spectrally narrow) pulse.
Hence, for simplicity, we can cut off this Taylor series at $$\beta_2$$,
which is good enough for many cases.
Inserting the expansion into $$A$$'s equation:

$$\begin{aligned}
    0
    &= i \pdv{A}{z} + i \frac{\beta_1}{s} (-i s \Omega) A - \frac{\beta_2}{2 s^2} (- i s \Omega)^2 A + \Delta{\beta}_0 A
\end{aligned}$$

Which we have rewritten as preparation for taking the inverse Fourier transform,
by introducing $$s$$ and by replacing $$\Delta{\beta}(\omega)$$
with $$\Delta{\beta_0} \equiv \Delta{\beta}(\omega_0)$$
in order to remove all explicit dependence on $$\omega$$.
After transforming and using $$s^2 = 1$$,
we get the following equation for $$A(z, t)$$:

$$\begin{aligned}
    0
    &= i \pdv{A}{z} + i s \beta_1 \pdv{A}{t} - \frac{\beta_2}{2} \pdvn{2}{A}{t} + \Delta{\beta}_0 A
\end{aligned}$$

The next step is to insert our expression for $$\Delta{\beta}_0$$,
for which we must first choose a specific form for $$\Delta{n}$$
according to which effects we want to include.
Earlier, we approximated $$\varepsilon_r \approx n^2$$,
so if we instead say that $$\varepsilon_r = (n \!+\! \Delta{n})^2$$,
then $$\Delta{n}$$ should include absorption and nonlinearity.
A simple and commonly used form for $$\Delta{n}$$ is therefore:

$$\begin{aligned}
    \Delta{n}
    = n_2 I + i \frac{\alpha c}{2 \omega}
\end{aligned}$$

Where $$I$$ is the intensity (i.e. power per unit area) of the light,
$$n_2$$ is the material's *Kerr coefficient* in units of inverse intensity,
and $$\alpha$$ is the attenuation coefficient
consisting of linear and nonlinear contributions
(see [multi-photon absorption](/know/concept/multi-photon-absorption/)).
Specifically, they are given by:

$$\begin{aligned}
    n_2
    = \frac{3 \Real\{\chi^{(3)}_{xxxx}\}}{4 \varepsilon_0 c n^2}
    \qquad
    \alpha
    = \frac{\omega \Imag\{\chi^{(1)}_{xx}\}}{c n}
    + \frac{3 \omega \Imag\{\chi^{(3)}_{xxxx}\}}{2 \varepsilon_0 c^2 n^2} I
    \qquad
    I
    = \frac{\varepsilon_0 c n}{2} |E|^2
\end{aligned}$$

For simplicity, we set $$\Imag\{\chi^{(3)}_{xxxx}\} = 0$$,
which is a good approximation for fibers made of silica.
Inserting this form of $$\Delta{n}$$ into $$\Delta{\beta_0}$$ then yields:

$$\begin{aligned}
    \Delta{\beta}_0
    &= i \frac{\alpha}{2} \frac{\mathcal{A}_\mathrm{mode}}{\mathcal{A}_\mathrm{mode}}
    + \frac{\omega_0 \varepsilon_0 c n n_2}{2 c \mathcal{A}_\mathrm{mode}} |A|^2 \iint_{-\infty}^\infty |F|^4 \dd{x} \dd{y}
    \\
    &= i \frac{\alpha}{2}
    + \gamma_0 \frac{\varepsilon_0 c n}{2} \mathcal{A}_\mathrm{mode} |A|^2
\end{aligned}$$

Where we have defined the nonlinear parameter $$\gamma_0$$ like so,
involving the **effective mode area** $$\mathcal{A}_\mathrm{eff}$$,
which contains all information about $$F$$ needed for solving $$A$$'s equation:

$$\begin{aligned}
    \boxed{
        \gamma_0
        = \gamma(\omega_0)
        \equiv \frac{\omega_0 n_2}{c \mathcal{A}_\mathrm{eff}}
    }
    \qquad \qquad
    \boxed{
        \mathcal{A}_\mathrm{eff}(\omega_0)
        \equiv \frac{\displaystyle \bigg( \iint_{-\infty}^\infty |F|^2 \dd{x} \dd{y} \bigg)^2}
        {\displaystyle \iint_{-\infty}^\infty |F|^4 \dd{x} \dd{y}}
    }
\end{aligned}$$

Substituting $$\Delta{\beta_0}$$ into the main problem
yields a prototype of the NLS equation:

$$\begin{aligned}
    0
    &= i \pdv{A}{z} + i s \beta_1 \pdv{A}{t} - \frac{\beta_2}{2} \pdvn{2}{A}{t} + i \frac{\alpha}{2} A
    + \gamma_0 \frac{\varepsilon_0 c n}{2} \mathcal{A}_\mathrm{mode} |A|^2 A
\end{alig