1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
---
title: "Optical Bloch equations"
sort_title: "Optical Bloch equations"
date: 2023-01-19
categories:
- Physics
- Quantum mechanics
- Two-level system
layout: "concept"
---
For an electron in a two-level system with time-independent states
$$\ket{g}$$ (ground) and $$\ket{e}$$ (excited),
consider the following general solution
to the time-dependent Schrödinger equation:
$$\begin{aligned}
\ket{\Psi}
&= c_g \ket{g} e^{-i \varepsilon_g t / \hbar} + c_e \ket{e} e^{-i \varepsilon_e t / \hbar}
\end{aligned}$$
Perturbing this system with
an [electromagnetic wave](/know/concept/electromagnetic-wave-equation/)
introduces a time-dependent sinusoidal term $$\hat{H}_1$$ to the Hamiltonian.
In the [electric dipole approximation](/know/concept/electric-dipole-approximation/),
$$\hat{H}_1$$ is given by:
$$\begin{aligned}
\hat{H}_1(t)
= - \hat{\vb{p}} \cdot \vb{E}(t)
\qquad \qquad
\vu{p}
\equiv q \vu{x}
\qquad \qquad
\vb{E}(t)
= \vb{E}_0 \cos(\omega t)
\end{aligned}$$
Where $$\vb{E}$$ is an [electric field](/know/concept/electric-field/),
and $$\hat{\vb{p}}$$ is the dipole moment operator.
From [Rabi oscillation](/know/concept/rabi-oscillation/),
we know that the time-varying coefficients $$c_g$$ and $$c_e$$
can then be described by:
$$\begin{aligned}
\dv{c_g}{t}
&= i \frac{q \matrixel{g}{\vu{x}}{e} \cdot \vb{E}_0}{2 \hbar} \: e^{i (\omega - \omega_0) t} \: c_e
\\
\dv{c_e}{t}
&= i \frac{q \matrixel{e}{\vu{x}}{g} \cdot \vb{E}_0}{2 \hbar} \: e^{- i (\omega - \omega_0) t} \: c_g
\end{aligned}$$
Where $$\omega_0 \equiv (\varepsilon_e \!-\! \varepsilon_g) / \hbar$$ is the resonance frequency.
We want to rearrange these equations a bit,
so we split the field $$\vb{E}$$ as follows,
where the amplitudes $$\vb{E}_0^{-}$$ and $$\vb{E}_0^{+}$$
may be slowly-varying with respect to the carrier wave $$e^{\pm i \omega t}$$:
$$\begin{aligned}
\vb{E}(t)
&\equiv \vb{E}^{-}(t) + \vb{E}^{+}(t)
\\
&\equiv \vb{E}_0^{-} e^{i \omega t} + \vb{E}_0^{+} e^{-i \omega t}
\end{aligned}$$
Since $$\vb{E}$$ is real, $$\vb{E}_0^{+} = (\vb{E}_0^{-})^*$$.
Similarly, we define the transition dipole moment $$\vb{p}_0^{-}$$:
$$\begin{aligned}
\vb{p}_0^{-}
\equiv q \matrixel{e}{\vu{x}}{g}
\qquad \qquad
\vb{p}_0^{+}
\equiv (\vb{p}_0^{-})^*
= q \matrixel{g}{\vu{x}}{e}
\end{aligned}$$
With these, the equations for $$c_g$$ and $$c_e$$ can be rewritten as shown below.
Note that $$\vb{E}^{-}$$ and $$\vb{E}^{+}$$ include the driving plane wave, and the
[rotating wave approximation](/know/concept/rotating-wave-approximation/) is still made:
$$\begin{aligned}
\dv{c_g}{t}
&= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} e^{- i \omega_0 t} \: c_e
\\
\dv{c_e}{t}
&= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} e^{i \omega_0 t} \: c_g
\end{aligned}$$
For $$\ket{\Psi}$$ as defined above,
the corresponding pure [density operator](/know/concept/density-operator/)
$$\hat{\rho}$$ is as follows:
$$\begin{aligned}
\hat{\rho}
= \ket{\Psi} \bra{\Psi}
=
\begin{bmatrix}
c_e c_e^* & c_e c_g^* e^{-i \omega_0 t} \\
c_g c_e^* e^{i \omega_0 t} & c_g c_g^*
\end{bmatrix}
\equiv
\begin{bmatrix}
\rho_{ee} & \rho_{eg} \\
\rho_{ge} & \rho_{gg}
\end{bmatrix}
\end{aligned}$$
We take the $$t$$-derivative of the matrix elements,
and insert the equations for $$c_g$$ and $$c_e$$:
$$\begin{aligned}
\dv{\rho_{gg}}{t}
&= \dv{c_g}{t} c_g^* + c_g \dv{c_g^*}{t}
\\
&= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} c_e c_g^* e^{- i \omega_0 t}
- \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} c_g c_e^* e^{i \omega_0 t}
\\
\dv{\rho_{ee}}{t}
&= \dv{c_e}{t} c_e^* + c_e \dv{c_e^*}{t}
\\
&= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} c_g c_e^* e^{i \omega_0 t}
- \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} c_e c_g^* e^{- i \omega_0 t}
\\
\dv{\rho_{ge}}{t}
&= \dv{c_g}{t} c_e^* e^{i \omega_0 t} + c_g \dv{c_e^*}{t} e^{i \omega_0 t} + i \omega_0 c_g c_e^* e^{i \omega_0 t}
\\
&= \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} c_e c_e^*
- \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} c_g c_g^*
+ i \omega_0 c_g c_e^* e^{i \omega_0 t}
\\
\dv{\rho_{eg}}{t}
&= \dv{c_e}{t} c_g^* e^{-i \omega_0 t} + c_e \dv{c_g^*}{t} e^{-i \omega_0 t} - i \omega_0 c_e c_g^* e^{- i \omega_0 t}
\\
&= \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} c_g c_g^*
- \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} c_e c_e^*
- i \omega_0 c_e c_g^* e^{- i \omega_0 t}
\end{aligned}$$
Recognizing the density matrix elements allows us
to reduce these equations to:
$$\begin{aligned}
\dv{\rho_{gg}}{t}
&= \frac{i}{\hbar} \Big( \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} - \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} \Big)
\\
\dv{\rho_{ee}}{t}
&= \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} - \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} \Big)
\\
\dv{\rho_{ge}}{t}
&= i \omega_0 \rho_{ge} + \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \big( \rho_{ee} - \rho_{gg} \big)
\\
\dv{\rho_{eg}}{t}
&= - i \omega_0 \rho_{eg} + \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \big( \rho_{gg} - \rho_{ee} \big)
\end{aligned}$$
These equations are correct if nothing else is affecting $$\hat{\rho}$$.
But in practice, these quantities decay due to various processes,
e.g. [spontaneous emission](/know/concept/einstein-coefficients/).
Suppose $$\rho_{ee}$$ decays with rate $$\gamma_e$$.
Because the total probability $$\rho_{ee} + \rho_{gg} = 1$$, we have:
$$\begin{aligned}
\Big( \dv{\rho_{ee}}{t} \Big)_{e}
= - \gamma_e \rho_{ee}
\quad \implies \quad
\Big( \dv{\rho_{gg}}{t} \Big)_{e}
= \gamma_e \rho_{ee}
\end{aligned}$$
Meanwhile, for whatever reason,
let $$\rho_{gg}$$ decay into $$\rho_{ee}$$ with rate $$\gamma_g$$:
$$\begin{aligned}
\Big( \dv{\rho_{gg}}{t} \Big)_{g}
= - \gamma_g \rho_{gg}
\quad \implies \quad
\Big( \dv{\rho_{gg}}{t} \Big)_{g}
= \gamma_g \rho_{gg}
\end{aligned}$$
And finally, let the diagonal (perpendicular) matrix elements
both decay with rate $$\gamma_\perp$$:
$$\begin{aligned}
\Big( \dv{\rho_{eg}}{t} \Big)_{\perp}
= - \gamma_\perp \rho_{eg}
\qquad \qquad
\Big( \dv{\rho_{ge}}{t} \Big)_{\perp}
= - \gamma_\perp \rho_{ge}
\end{aligned}$$
Putting everything together,
we arrive at the **optical Bloch equations** governing $$\hat{\rho}$$,
which are the basis of the
[Maxwell-Bloch equations](/know/concept/maxwell-bloch-equations/)
and by extension all laser theory:
$$\begin{aligned}
\boxed{
\begin{aligned}
\dv{\rho_{gg}}{t}
&= \gamma_e \rho_{ee} - \gamma_g \rho_{gg}
+ \frac{i}{\hbar} \Big( \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} - \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} \Big)
\\
\dv{\rho_{ee}}{t}
&= \gamma_g \rho_{gg} - \gamma_e \rho_{ee}
+ \frac{i}{\hbar} \Big( \vb{p}_0^{-} \cdot \vb{E}^{+} \rho_{ge} - \vb{p}_0^{+} \cdot \vb{E}^{-} \rho_{eg} \Big)
\\
\dv{\rho_{ge}}{t}
&= - \Big( \gamma_\perp - i \omega_0 \Big) \rho_{ge}
+ \frac{i}{\hbar} \vb{p}_0^{+} \cdot \vb{E}^{-} \Big( \rho_{ee} - \rho_{gg} \Big)
\\
\dv{\rho_{eg}}{t}
&= - \Big( \gamma_\perp + i \omega_0 \Big) \rho_{eg}
+ \frac{i}{\hbar} \vb{p}_0^{-} \cdot \vb{E}^{+} \Big( \rho_{gg} - \rho_{ee} \Big)
\end{aligned}
}
\end{aligned}$$
Some authors simplify these equations a bit by choosing
$$\gamma_g = 0$$ and $$\gamma_\perp = \gamma_e / 2$$.
## References
1. F. Kärtner,
[Ultrafast optics: lecture notes](https://ocw.mit.edu/courses/6-977-ultrafast-optics-spring-2005/pages/lecture-notes/),
2005, Massachusetts Institute of Technology.
2. H.J. Metcalf, P. van der Straten,
*Laser cooling and trapping*,
1999, Springer.
|