1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
|
---
title: "Optical soliton"
sort_title: "Optical soliton"
date: 2024-09-20
categories:
- Physics
- Mathematics
- Fiber optics
- Nonlinear optics
layout: "concept"
---
In general, a **soliton** is a wave packet
that maintains its shape as it travels over great distances.
They are only explainable by nonlinear physics,
but many (often unrelated) nonlinear equations give rise to solitons:
the [Boussinesq equations](/know/concept/boussinesq-wave-theory/),
the [Korteweg-de Vries equation](/know/concept/korteweg-de-vries-equation/),
the [nonlinear Schrödinger (NLS) equation](/know/concept/nonlinear-schrodinger-equation/),
and more.
Here we consider waveguide optics,
which is governed by the NLS equation,
given in dimensionless form by:
$$\begin{aligned}
i u_z + u_{tt} + r |u|^2 u
= 0
\end{aligned}$$
Where $$r = \pm 1$$ determines the dispersion regime,
and subscripts denote differentiation.
We start by making the most general ansatz
for the pulse envelope $$u(z, t)$$, namely:
$$\begin{aligned}
u(z, t)
= \phi(z, t) \: e^{i \theta(z, t)}
\end{aligned}$$
With $$\phi$$ and $$\theta$$ both real.
Note that no generality has been lost yet:
we have simply split a single complex function
into two real ones.
The derivatives of $$u$$ thus become:
$$\begin{aligned}
u_z
&= (\phi_z + i \phi \theta_z) \: e^{i \theta}
\\
u_t
&= (\phi_t + i \phi \theta_t) \: e^{i \theta}
\\
u_{tt}
&= (\phi_{tt} + 2 i \phi_t \theta_t + i \phi \theta_{tt} - \phi \theta_t^2) \: e^{i \theta}
\end{aligned}$$
Inserting $$u_z$$ and $$u_{tt}$$ into the NLS equation leads us to:
$$\begin{aligned}
0
&= i \phi_z - \phi \theta_z + \phi_{tt} + 2 i \phi_t \theta_t + i \phi \theta_{tt} - \phi \theta_t^2 + r \phi^3
\\
&= \phi_{tt} - \phi \theta_t^2 - \phi \theta_z + r \phi^3 + i (\phi \theta_{tt} + 2 \phi_t \theta_t + \phi_z)
\end{aligned}$$
Since $$\phi$$ and $$\theta$$ are both real,
we can split this equation into its real and imaginary parts:
$$\begin{aligned}
\boxed{
\begin{aligned}
0
&= \phi_{tt} - \phi \theta_t^2 - \phi \theta_z + r \phi^3
\\
0
&= \phi \theta_{tt} + 2 \phi_t \theta_t + \phi_z
\end{aligned}
}
\end{aligned}$$
Still no generality has been lost so far:
these coupled equation are totally equivalent to the NLS equation.
But now it is time make a more specific ansatz,
namely that $$\phi$$ and $$\theta$$ both have a fixed shape
but move at a group velocity $$v$$
and phase velocity $$w$$, respectively:
$$\begin{aligned}
\phi(z, t)
&= \phi(t - v z)
\\
\theta(z, t)
&= \theta(t - w z)
\end{aligned}$$
Meaning $$\phi_z = -v \phi_t$$ and $$\theta_z = -w \theta_t$$.
Now the coupled equations are given by:
$$\begin{aligned}
0
&= \phi_{tt} - \phi \theta_t^2 + w \phi \theta_t + r \phi^3
\\
0
&= \phi \theta_{tt} + 2 \phi_t \theta_t - v \phi_t
\end{aligned}$$
We multiply the imaginary part's equation by $$\phi$$ and take its indefinite integral,
which can then be evaluated by recognizing the product rule of differentiation:
$$\begin{aligned}
0
&= \int \Big( \phi^2 \theta_{tt} + 2 \phi \phi_t \theta_t - v \phi \phi_t \Big) \dd{t}
\\
&= \phi^2 \theta_t - \frac{v}{2} \phi^2
\end{aligned}$$
Where the integration constant has been set to zero.
This implies $$\theta_t = v/2$$, which we insert into the real part's equation, giving:
$$\begin{aligned}
0
&= \phi_{tt} + \frac{v}{4} (2 w - v) \phi + r \phi^3
\end{aligned}$$
Defining $$B \equiv v (v - 2 w) / 4$$,
multiplying by $$2 \phi_t$$, and integrating in the same way:
$$\begin{aligned}
0
&= \int \Big( 2 \phi_t \phi_{tt} - 2 B \phi \phi_t + 2 r \phi^3 \phi_t \Big) \dd{t}
\\
&= \phi_t^2 - B \phi^2 + \frac{r}{2} \phi^4 - C
\end{aligned}$$
Where $$C$$ is an integration constant.
Rearranging this yields a powerful equation,
which can be interpreted as a "pseudoparticle"
with kinetic energy $$\phi_t^2$$ moving in a potential $$-P(\phi)$$:
$$\begin{aligned}
\boxed{
\phi_t^2
= P(\phi)
\equiv -\frac{r}{2} \phi^4 + B \phi^2 + C
}
\end{aligned}$$
We further restrict the set of acceptable solutions
by demanding that $$\phi(t)$$ is localized,
meaning $$\phi \to \phi_\infty$$ when $$t \to \pm \infty$$,
for a finite constant $$\phi_\infty$$.
This implies $$\phi_t \to 0$$ and $$\phi_{tt} \to 0$$:
the former clearly requires $$P(\phi_\infty) = 0$$.
Regarding the latter, we differentiate
the pseudoparticle equation with respect to $$t$$,
which tells us for $$t \to \pm \infty$$:
$$\begin{aligned}
0
= \phi_{tt}
&= \frac{1}{2} P'(\phi_\infty)
= (B - r \phi_\infty^2) \phi_\infty
\end{aligned}$$
Here we have two options:
the "bright" case $$\phi_\infty = 0$$,
and the "dark" case $$\phi_\infty^2 = r B$$.
Before we investigate those further,
let us finish finding $$\theta$$:
we know that $$\theta_t = v/2$$, so:
$$\begin{aligned}
\theta(t - w z)
= \int \theta_t \dd{(t - w v)}
= \frac{v}{2} (t - w v)
\end{aligned}$$
Where we can ignore the integration constant
because the NLS equation has *Gauge symmetry*,
i.e. it is invariant under a transformation
of the form $$u \to u e^{i a}$$ with constant $$a$$.
Finally, we rewrite this result to eliminate $$w$$ in favor of $$B$$:
$$\begin{aligned}
\theta(z, t)
= \frac{v}{2} t - \bigg( \frac{v^2}{4} - B \bigg) z
\end{aligned}$$
## Bright solitons
First we consider the "bright" option $$\phi_\infty = 0$$,
where our requirement that $$P(\theta_\infty) = 0$$
clearly means that we must set $$C = 0$$.
We are therefore left with:
$$\begin{aligned}
\phi_t^2
= P(\phi)
= -\frac{r}{2} \phi^4 + B \phi^2
\end{aligned}$$
We must consider $$r = 1$$ and $$r = -1$$, and the sign of $$B$$;
the possible forms of $$P(\phi)$$ are shown in the sketch below.
Because $$\phi_t$$ is real by definition,
valid solutions can only exist in the shaded regions where $$P(\phi) \ge 0$$:
{% include image.html file="bright-full.png" width="75%"
alt="Sketch of candidate potentials for bright solitons" %}
However, in order to have *stable* solutions
where $$\phi$$ does not grow uncontrolably,
we must restrict ourselves to shaded regions with a finite area.
Otherwise, if they are infinite (as for $$r = -1$$),
then a positive feedback loop arises:
$$\phi_t^2$$ grows, so $$|\phi|$$ increases,
then according to the sketch $$\phi_t^2$$ grows even more, etc.
While mathematically correct, that would be physically unacceptable,
so the only valid case here is $$r = 1$$ with $$B > 0$$.
Armed with this knowledge,
we are now ready to integrate the pseudoparticle integration.
First, we rewrite it as follows, defining $$x \equiv t - vz$$:
$$\begin{aligned}
\phi_t
= \pdv{\phi}{x}
= \pm \sqrt{P(\phi)}
= \pm \phi \sqrt{B - \phi^2 / 2}
\end{aligned}$$
This can be rearranged such that the differential elements
$$\dd{x}$$ and $$\dd{\phi}$$ are on opposite sides,
which can then each be wrapped in an integral, like so:
$$\begin{aligned}
\dd{x}
= \pm \frac{\sqrt{2}}{\phi \sqrt{2 B - \phi^2}} \dd{\phi}
\qquad\implies\qquad
\int_{x_0}^{x} \dd{\xi}
= \pm \sqrt{2} \int_{\phi_0}^{\phi} \frac{1}{\psi \sqrt{2 B - \psi^2}} \dd{\psi}
\end{aligned}$$
Note that these are *indefinite* integrals,
which have been written as *definite* integrals
by placing the constants $$x_0$$ and $$\phi_0$$
and target variables $$x$$ and $$\phi$$ in the limits.
In order to integrate by substitution,
we define the new variable $$f \equiv \psi / \sqrt{2 B}$$
and update the limits accordingly
to $$F \equiv \phi / \sqrt{2 B}$$
and $$F_0 \equiv \phi_0 / \sqrt{2 B}$$:
$$\begin{aligned}
x - x_0
&= \pm \sqrt{2} \int_{F_0}^{F} \frac{\sqrt{2 B}}{f \sqrt{2 B} \sqrt{2 B - 2 B f^2}} \dd{f}
\\
&= \pm \frac{1}{\sqrt{B}} \int_{F_0}^{F} \frac{1}{f \sqrt{1 - f^2}} \dd{f}
\end{aligned}$$
We look up this integrand, and discover that it is in fact the derivative
of the inverse $$\sech^{-1}$$ of the hyperbolic secant function, so we arrive at:
$$\begin{aligned}
x - x_0
&= \pm \frac{1}{\sqrt{B}} \int_{F_0}^{F} \dv{}{f} \Big( \sech^{-1}(f) \Big) \dd{f}
\\
&= \pm \frac{1}{\sqrt{B}} \sech^{-1}(F) \mp \frac{1}{\sqrt{B}} \sech^{-1}(F_0)
\end{aligned}$$
Rearranging and combining the integration constants
$$x_0$$ and $$F_0$$ into a single $$t_0$$, we get:
$$\begin{aligned}
\sech^{-1}(F)
= \pm \sqrt{B} (x - t_0)
\qquad\qquad
t_0
\equiv x_0 \mp \frac{1}{\sqrt{B}} \sech^{-1}(F_0)
\end{aligned}$$
Then, wrapping everything in $$\sech$$
(which is an even function, so we can discard the $$\pm$$)
and using $$F \equiv \phi / \sqrt{2 B}$$,
we finally arrive at the desired solution for $$\phi$$:
$$\begin{aligned}
\phi(x)
= \sqrt{2 B} \sech\!\Big( \sqrt{B} (x - t_0) \Big)
\end{aligned}$$
Combining this result with our earlier solution for $$\theta$$,
we find that the full so-called **bright soliton** $$u$$
is as follows, controlled by two real parameters
$$B > 0$$ and $$v$$:
$$\begin{aligned}
\boxed{
u(z, t)
= \sqrt{2 B} \sech\!\bigg( \sqrt{B} (t - v z - t_0) \bigg)
\exp\!\bigg( i \frac{v}{2} t - i \Big( \frac{v^2}{4} - B \Big) z \bigg)
}
\end{aligned}$$
It is always possible to transform the NLS equation
into a new moving coordinate system such that $$v = 0$$,
yielding a stationary soliton given by:
$$\begin{aligned}
\boxed{
u(z, t)
= \sqrt{2 B} \sech\!\Big( \sqrt{B} (t - t_0) \Big) \exp(i B z)
}
\end{aligned}$$
You may be wondering how we can set $$v = 0$$ without affecting $$B$$;
a more correct way of saying it would be that
we take the limits $$v \to 0$$ and $$w \to -\infty$$.
That was for the dimensionless form of the NLS equation;
let us specialize this to its usual form in fiber optics.
We thus make a transformation $$u \to U/U_c$$,
$$t \to T/T_c$$ and $$z \to Z/Z_c$$:
$$\begin{aligned}
\frac{U(Z, T)}{U_c}
&= \sqrt{2 B} \sech\!\bigg( \sqrt{B} \: \frac{T - T_0}{T_c} \bigg)
\exp\!\bigg( i B \frac{Z}{Z_c} \bigg)
\end{aligned}$$
Where $$U_c$$, $$T_c$$ and $$Z_c$$ are scale constants
determined during non-dimensionalization
to obey the relations below.
We only have two relations, so we can choose one value freely,
say, $$U_c$$:
$$\begin{aligned}
Z_c
= \frac{1}{\gamma_0 U_c^2}
\qquad\qquad
T_c
= \sqrt{\frac{- \beta_2}{2 \gamma_0 U_c^2}}
\end{aligned}$$
Note that $$r = 1$$ implies $$\beta_2 < 0$$ assuming $$\gamma_0 > 0$$.
In other words, bright solitons only exist
in the anomalous dispersion regime of an optical fiber.
Inserting these relations into the expression
and defining the peak power $$P_0 \equiv 2 B U_c^2$$ yields:
$$\begin{aligned}
U(Z, T)
&= \sqrt{P_0}
\sech\!\Bigg( \sqrt{\frac{\gamma_0 P_0}{- \beta_2}} (T - T_0) \Bigg)
\exp\!\bigg( i \frac{\gamma_0 P_0}{2} Z \bigg)
\end{aligned}$$
In practice, most authors write this as follows,
where $$T_\mathrm{w}$$ determines the width of the pulse:
$$\begin{aligned}
\boxed{
U(Z, T)
= \sqrt{P_0} \sech\!\bigg( \frac{T - T_0}{T_\mathrm{w}} \bigg) \exp\!\bigg( i \frac{\gamma_0 P_0}{2} Z \bigg)
}
\end{aligned}$$
Clearly, for this to be a valid solution of the NLS equation,
$$T_\mathrm{w}$$ must be subject to a constraint
involving the so-called **soliton number** $$N_\mathrm{sol}$$:
$$\begin{aligned}
\boxed{
N_\mathrm{sol}^2
\equiv \frac{L_D}{L_N}
= \frac{\gamma_0 P_0 T_\mathrm{w}^2}{|\beta_2|}
= 1
}
\end{aligned}$$
Where $$L_D \equiv T_0 / |\beta_2|$$ is the linear length scale
of [dispersive broadening](/know/concept/dispersive-broadening/),
and $$L_N \equiv 1 / (\gamma_0 P_0)$$ is the nonlinear length scale
of [self-phase modulation](/know/concept/self-phase-modulation/).
A *first-order* soliton has $$N_\mathrm{sol} = 1$$
and simply maintains its shape,
whereas higher-order solitons have complicated periodic dynamics.
## Dark solitons
The other option to satisfy $$P'(\phi_\infty) = 0$$
is $$\phi_\infty^2 = r B$$, which implies $$r B > 0$$
such that $$\phi_\infty$$ is real.
With this in mind, we again sketch all remaining candidates for $$P(\phi)$$:
{% include image.html file="dark-full.png" width="75%"
alt="Sketch of candidate potentials for dark solitons" %}
At a glance, there are plenty of solutions here, even stable ones!
However, as explained earlier, our localization requirement
means that we need $$P(\phi_\infty) = 0$$ and $$P'(\phi_\infty) = 0$$.
The latter is only satisfied by the solid curve above,
so we must limit ourselves to $$r = -1$$ and $$B < 0$$,
with $$C = C_0$$ for some positive $$C_0$$.
The next step is to find $$C_0$$.
We notice that the target curve has two double roots
at $$\pm \phi_\infty$$, so we can rewrite:
$$\begin{aligned}
P(\phi)
&= \frac{1}{2} \Big( \phi^4 + 2 B \phi^2 + 2 C \Big)
\\
&= \frac{1}{2} \Big( \phi^4 + 2 B \phi^2 + B^2 - B^2 + 2 C \Big)
\\
&= \frac{1}{2} \big( \phi^2 + B \big)^2 - \frac{1}{2} \big( B^2 - 2 C \big)
\end{aligned}$$
Here we see that $$P(\phi_\infty)$$ can only have a double root
when $$C = C_0 = B^2 / 2$$, in which case the root is clearly $$\phi_\infty = \pm \sqrt{-B}$$.
We are therefore left with:
$$\begin{aligned}
\phi_t^2
= P(\phi)
= \frac{1}{2} \big( \phi^2 + B \big)^2
\end{aligned}$$
Now we are ready to integrate this equation.
Taking the square root with $$x \equiv t - v z$$:
$$\begin{aligned}
\phi_t
= \pdv{\phi}{x}
= \pm \sqrt{P(\phi)}
= \pm \frac{1}{\sqrt{2}} (\phi^2 + B)
\end{aligned}$$
We put the differential elements $$\dd{\phi}$$ and $$\dd{x}$$
on opposite sides and take the integrals:
$$\begin{aligned}
\dd{x}
= \pm \frac{\sqrt{2}}{\phi^2 + B} \dd{\phi}
\qquad\implies\qquad
\int_{x_0}^{x} \dd{\xi}
= \pm \sqrt{2} \int_{\phi_0}^{\phi} \frac{1}{\psi^2 + B} \dd{\psi}
\end{aligned}$$
Then we define $$f \equiv \psi / \sqrt{-B}$$,
and update the limits to
$$F = \phi / \sqrt{-B}$$ and $$F_0 = \phi_0 / \sqrt{-B}$$,
in order to integrate by substitution:
$$\begin{aligned}
x - x_0
&= \pm \sqrt{2} \int_{F_0}^{F} \frac{\sqrt{-B}}{- B f^2 + B} \dd{f}
\\
&= \pm \sqrt{-\frac{2}{B}} \int_{F_0}^{F} \frac{1}{1 - f^2} \dd{f}
\end{aligned}$$
The integrand can be looked up:
it turns out be the derivative of $$\tanh^{-1}$$,
the inverse hyperbolic tangent function,
so we arrive at:
$$\begin{aligned}
x - x_0
&= \pm \sqrt{-\frac{2}{B}} \int_{F_0}^{F} \dv{}{f} \Big( \tanh^{-1}(f) \Big) \dd{f}
\\
&= \pm \sqrt{-\frac{2}{B}} \tanh^{-1}(F) \mp \sqrt{-\frac{2}{B}} \tanh^{-1}(F_0)
\end{aligned}$$
Rearranging, and combining the integration constants
$$x_0$$ and $$F_0$$ into a single $$t_0$$, yields:
$$\begin{aligned}
\tanh^{-1}(F)
&= \pm \sqrt{-\frac{B}{2}} (x - t_0)
\qquad\qquad
t_0
\equiv x_0 \mp \sqrt{-\frac{2}{B}} \tanh^{-1}(F_0)
\end{aligned}$$
Next, we take the $$\tanh$$ of both sides.
It is an odd function, so the $$\pm$$ can be moved outside,
where it can be ignored entirely thanks to the NLS equation's Gauge symmetry.
Using $$F = \phi / \sqrt{-B}$$:
$$\begin{aligned}
\phi(x)
&= \sqrt{-B} \tanh\!\Bigg( \sqrt{-\frac{B}{2}} (x - t_0) \Bigg)
\end{aligned}$$
Combining this with our expression for $$\theta$$,
we arrive at the full **dark soliton** solution for $$u$$:
$$\begin{aligned}
\boxed{
u(z, t)
= \sqrt{-B} \tanh\!\Bigg( \sqrt{-\frac{B}{2}} (t - v z - t_0) \Bigg)
\exp\!\bigg( i \frac{v}{2} t - i \Big( \frac{v^2}{4} - B \Big) z \bigg)
}
\end{aligned}$$
There are two free parameters here: $$B < 0$$ and $$v$$.
Once again, we can always transform to a moving coordinate system such that $$v = 0$$,
resulting in a stationary soliton:
$$\begin{aligned}
\boxed{
u(z, t)
= \sqrt{-B} \tanh\!\Bigg( \sqrt{-\frac{B}{2}} (t - t_0) \Bigg)
\exp(i B z)
}
\end{aligned}$$
Like we did for the bright solitons,
let us specialize this result to fiber optics.
Making a similar transformation $$u \to U/U_c$$,
$$t \to T/T_c$$ and $$z \to Z/Z_c$$ yields:
$$\begin{aligned}
\frac{U(Z, T)}{U_c}
= \sqrt{-B} \tanh\!\Bigg( \sqrt{-\frac{B}{2}} \frac{T - T_0}{T_c} \Bigg)
\exp\!\bigg( i B \frac{Z}{Z_c} \bigg)
\end{aligned}$$
Where we again choose $$U_c$$ manually,
and then find $$T_c$$ and $$Z_c$$ using these relations
(note the opposite signs because $$r = -1$$ in this case):
$$\begin{aligned}
Z_c
= \frac{-1}{\gamma_0 U_c^2}
\qquad\qquad
T_c
= \sqrt{\frac{\beta_2}{2 \gamma_0 U_c^2}}
\end{aligned}$$
Recall that $$r = -1$$ implies $$\beta_2 > 0$$ assuming $$\gamma_0 > 0$$,
meaning dark solitons can only exist in the normal dispersion regime.
Inserting this into the expression
and defining the background power $$P_0 \equiv -B U_c^2$$
such that $$|U|^2 \to P_0$$ for $$t \to \pm \infty$$,
we arrive at:
$$\begin{aligned}
U(Z, T)
= \sqrt{P_0} \tanh\!\Bigg( \sqrt{\frac{\gamma_0 P_0}{\beta_2}} (T - T_0) \Bigg) \exp(i \gamma_0 P_0 Z)
\end{aligned}$$
Which, as for bright solitons, can be rewritten
with a pulse width $$T_\mathrm{w}$$ satisfying $$N_\mathrm{sol} = 1$$:
$$\begin{aligned}
\boxed{
U(Z, T)
= \sqrt{P_0} \tanh\!\bigg( \frac{T - T_0}{T_\mathrm{w}} \bigg) \exp(i \gamma_0 P_0 Z)
}
\end{aligned}$$
## References
1. A. Scott,
*Nonlinear science: emergence and dynamics of coherent structures*,
2nd edition, Oxford.
2. O. Bang,
*Nonlinear mathematical physics: lecture notes*,
2020, unpublished.
|