1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
---
title: "Path integral formulation"
sort_title: "Path integral formulation"
date: 2021-07-03
categories:
- Physics
- Quantum mechanics
layout: "concept"
---
The **path integral formulation** is an alternative description
of quantum mechanics, equivalent to the traditional Schrödinger equation.
Whereas the latter is based on [Hamiltonian mechanics](/know/concept/hamiltonian-mechanics/),
the former comes from [Lagrangian mechanics](/know/concept/lagrangian-mechanics/).
It expresses the [propagator](/know/concept/propagator/) $$K$$
as the following "sum" over all possible paths $$x(t)$$
that take the particle from the starting point $$(x_0, t_0)$$
to the destination $$(x_N, t_N)$$:
$$\begin{aligned}
K(x_N, t_N; x_0, t_0)
= A \sum_{\mathrm{all}\:x(t)} \exp(i S[x] / \hbar)
\end{aligned}$$
Where $$A$$ is a normalization constant,
and $$S[x]$$ is the classical action of the path $$x(t)$$,
defined as shown below from the system's Lagrangian $$L$$,
and whose minimization would lead to the
[Euler-Lagrange equation](/know/concept/euler-lagrange-equation/)
of classical Lagrangian mechanics.
Let $$\dot{x}(t) = \idv{x}{t}$$:
$$\begin{aligned}
S[x]
\equiv \int_{t_0}^{t_N} L(x, \dot{x}, \tau) \dd{\tau}
\end{aligned}$$
Note that $$K$$'s sum gives each path an equal weight,
even unrealistic paths taking bigs detours.
This apparent problem solves itself as follows:
paths close to the classical optimum $$x_c(t)$$
have an action close to $$S_c = S[x_c]$$,
since $$S$$ is stationary there.
Meanwhile, for paths far away from $$x_c$$,
$$S$$ gives very different values,
which change by a lot if a small change is made to $$x$$.
Because $$S[x]$$ is inside a complex exponential,
paths close to $$x_c$$ therefore add more or less constructively,
while the others add destructively and cancel out.
Consequently, the "quantum path" is still close to $$x_c(t)$$.
An interesting way to think about this is by treating $$\hbar$$ as a parameter:
as its value decreases, small action changes result in bigger phase differences,
which makes the quantum wavefunction stay closer to $$x_c$$
for the aforementioned reasons.
In the limit $$\hbar \to 0$$, quantum mechanics simply turns into classical mechanics.
In reality, $$K$$'s sum is evaluated as an integral over all paths $$x(t)$$,
hence this is called the *path integral formulation*.
The proof that the propagator $$K$$'s Schrödinger-picture definition
can be rewritten as such an integral is given below.
## Time-slicing derivation
For a time-independent Hamiltonian $$\hat{H}$$,
we start from the definition of the propagator $$K$$,
and divide the time interval $$t_N \!-\! t_0$$ into $$N$$ "slices"
of equal width $$\Delta{t} \equiv (t_N \!-\! t_0) / N$$:
$$\begin{aligned}
K(x_N, t_N; x_0, t_0)
&= \matrixel{x_N}{e^{- i \hat{H} (t_N - t_0) / \hbar}}{x_0}
\\
&= \matrixel{x_N}{e^{- i \hat{H} \Delta{t} / \hbar} \cdots e^{- i \hat{H} \Delta{t} / \hbar}}{x_0}
\end{aligned}$$
Between the exponentials we insert identity operators
$$\int_{-\infty}^\infty \Ket{x} \Bra{x} \dd{x}$$,
and define $$x_j \equiv x(t_j)$$ for an arbitrary path $$x(t)$$,
where $$t_j$$ is the endpoint of the $$j$$th slice.
This is equivalent to splitting $$K$$
into a product of all slices' individual propagators:
$$\begin{aligned}
K
&= K(x_N, t_N; x_{N-1}, t_{N-1})
\cdots K(x_2, t_2; x_1, t_1) \: K(x_1, t_1; x_0, t_0)
\\
&= \int \!\cdots \! \int
\matrixel{x_N}{e^{- i \hat{H} \Delta{t} / \hbar}}{x_{N-1}}
\cdots \matrixel{x_1}{e^{- i \hat{H} \Delta{t} / \hbar}}{x_0}
\dd{x_1} \cdots \dd{x_{N - 1}}
\end{aligned}$$
For sufficiently small time steps $$\Delta{t}$$ (i.e. large $$N$$),
we can split the Hamiltonian
into its kinetic and potential terms $$\hat{H} = \hat{T} + \hat{V}$$.
Note that this is an approximation,
since $$\hat{T}$$ and $$\hat{V}$$ are operators that do not commute,
but it becomes exact in the limit $$\Delta{t} \to 0$$:
$$\begin{aligned}
e^{- i \hat{H} \Delta{t} / \hbar}
\approx e^{- i \hat{T} \Delta{t} / \hbar} \: e^{- i \hat{V} \Delta{t} / \hbar}
\end{aligned}$$
We substitute $$\hat{V} = V(x_j)$$, and apply it directly to $$\ket{x_j}$$,
such that we can take it out of the inner product as a constant factor:
$$\begin{aligned}
\matrixel{x_{j+1}}{e^{- i \hat{H} \Delta{t} / \hbar}}{x_j}
&= \matrixel{x_{j+1}}{e^{- i \hat{T} \Delta{t} / \hbar} \: e^{- i \hat{V} \Delta{t} / \hbar}}{x_j}
\\
&= e^{- i V(x_j) \Delta{t} / \hbar} \matrixel{x_{j+1}}{e^{- i \hat{T} \Delta{t} / \hbar}}{x_j}
\end{aligned}$$
In order to evaluate the remaining inner product,
we insert the identity operator again,
this time expanded in the momentum basis $$\int_{-\infty}^\infty \Ket{p} \Bra{p} \dd{p}$$,
and use $$\hat{T} = \hat{p}^2 / (2m)$$ to get:
$$\begin{aligned}
\matrixel{x_{j+1}}{e^{- i \hat{T} \Delta t / \hbar}}{x_j}
&= \int_{-\infty}^\infty \matrixel{x_{j+1}}{e^{- i \hat{T} \Delta{t} / \hbar}}{p} \inprod{p}{x_j} \dd{p}
\\
&= \int_{-\infty}^\infty \exp\!\bigg(\!-\! i \frac{p^2 \Delta{t}}{2 m \hbar} \bigg) \inprod{x_{j+1}}{p} \inprod{p}{x_j} \dd{p}
\end{aligned}$$
In the momentum basis $$\Ket{p}$$,
the position basis vectors $$\Ket{x}$$
are given by plane waves:
$$\begin{aligned}
\inprod{p}{x}
= \frac{e^{- i x p / \hbar}}{\sqrt{2 \pi \hbar}}
\end{aligned}$$
Inserting this and looking up the resulting integral,
we arrive at:
$$\begin{aligned}
\matrixel{x_{j+1}}{e^{- i \hat{T} \Delta t / \hbar}}{x_j}
&= \frac{1}{2 \pi \hbar} \int_{-\infty}^\infty
\exp\!\bigg( \!-\! i \frac{\Delta{t}}{2 m \hbar} p^2 + i \frac{(x_{j+1} \!-\! x_j)}{\hbar} p \bigg) \dd{p}
\\
&= \frac{1}{2 \pi \hbar} \sqrt{\frac{2 \pi m \hbar}{i \Delta{t}}}
\exp\!\bigg( i \frac{m (x_{j+1} \!-\! x_j)^2}{2 \hbar \Delta{t}} \bigg)
\end{aligned}$$
Including the factor due to $$\hat{V}$$,
we find that the propagator of a single time slice is:
$$\begin{aligned}
\matrixel{x_{j+1}}{e^{- i \hat{H} \Delta t / \hbar}}{x_j}
= \sqrt{\frac{- i m}{2 \pi \hbar \Delta{t}}}
\exp\!\bigg( \frac{i}{\hbar} \frac{m}{2} \frac{(x_{j+1} \!-\! x_j)^2}{\Delta{t}} - \frac{i}{\hbar} V(x_j) \: \Delta{t} \bigg)
\end{aligned}$$
This is a "local" result;
inserting it into the "global" propagator $$K(x_N, t_N; x_0, t_0)$$ yields:
$$\begin{aligned}
K
&= \bigg( \frac{- i m}{2 \pi \hbar \Delta{t}} \bigg)^{\!N / 2}
\!\int\!\cdots\!\int \prod_{j = 0}^{N - 1}
\exp\!\bigg( \frac{i}{\hbar} \frac{m}{2} \frac{(x_{j+1} \!-\! x_j)^2}{\Delta{t}} - \frac{i}{\hbar} V(x_j) \: \Delta{t} \bigg)
\dd{x_1} \cdots \dd{x_{N-1}}
\\
&= \Big( \frac{- i m}{2 \pi \hbar \Delta{t}} \Big)^{\!N / 2}
\!\int\!\cdots\!\int
\exp\!\bigg( \frac{i \Delta{t}}{\hbar} \sum_{j = 0}^{N-1}
\Big( \frac{m}{2} \frac{(x_{j+1} \!-\! x_j)^2}{\Delta{t}^2} - V(x_j) \Big) \bigg)
\dd{x_1} \cdots \dd{x_{N-1}}
\end{aligned}$$
It is worth noting that there are $$N\!-\!1$$ integrals,
but $$N$$ factors $$(-i m / 2 \pi \hbar \Delta{t})^{1/2}$$
i.e. one for each slice.
According to convention, $$N\!-\!1$$ of those factors
are said to belong to the integrals,
and then the remaining one belongs to the process as a whole.
In the limit $$\Delta{t} \to 0$$ (or $$N \to \infty$$),
the sum in the exponent becomes an integral:
$$\begin{aligned}
\lim_{\Delta{t} \to 0}
\sum_{j = 0}^{N - 1} \bigg( \frac{m}{2} \frac{(x_{j+1} \!-\! x_j)^2}{\Delta{t}^2} - V(x_j) \bigg) \Delta{t}
\:\:&=\:\:
\int_{t_0}^{t_N} \!\bigg( \frac{1}{2} m \dot{x}^2 - V(x) \bigg) \dd{\tau}
\\
\:\:&=\:\:
\int_{t_0}^{t_N} L(x, \dot{x}, \tau) \dd{\tau}
\\
\:\:&=\:\:
S[x]
\end{aligned}$$
Where we have recognized the Lagrangian $$L = T - V$$
and hence the action $$S[x]$$ of the path $$x(t)$$.
We thus arrive at the following formula for the global propagator $$K$$,
known as **Feynman's path integral**
or sometimes the **configuration space path integral**:
$$\begin{aligned}
\boxed{
K
= \int e^{i S[x] / \hbar} \:\mathcal{D}{x}
}
\end{aligned}$$
Where we have introduced the following notation
to indicate an integral over all paths,
because writing the factor and all those integrals can become tedious:
$$\begin{aligned}
\boxed{
\int \mathcal{D}{x}
\equiv \lim_{N \to \infty} \Big( \frac{- i m}{2 \pi \hbar \Delta t} \Big)^{\!N / 2} \int\cdots\int \dd{x_1} \cdots \dd{x_{N-1}}
}
\end{aligned}$$
It is worth stressing that this is simply an abbreviation;
in practice, calculating $$K$$ in this way
still requires the individual slices to be taken into account.
## References
1. R. Shankar,
*Principles of quantum mechanics*, 2nd edition,
Springer.
2. L.E. Ballentine,
*Quantum mechanics: a modern development*, 2nd edition,
World Scientific.
|