summaryrefslogtreecommitdiff
path: root/source/know/concept/quantum-gate/index.md
blob: e8ff5792e4970ea5e3d9ae56cb6d1b1d788f0143 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
---
title: "Quantum gate"
sort_title: "Quantum gate"
date: 2021-03-29
categories:
- Quantum information
layout: "concept"
---

In quantum computing, **quantum gates** are the equivalent
of classical binary logic gates such as $$\mathrm{NOT}$$, $$\mathrm{AND}$$, etc.
Because of the continuous nature of qubits,
the number of possible quantum gates is uncountably infinite,
so we only consider the most important examples here.



## One-qubit gates

As an example, consider the following must general single-qubit state $$\Ket{\psi}$$:

$$\begin{aligned}
    \Ket{\psi}
    = \alpha \Ket{0} + \beta \Ket{1}
    = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}
\end{aligned}$$

Arguably the most famous and/or most fundamental quantum gates are the **Pauli matrices**:

$$\begin{aligned}
    \boxed{
        X =
        \begin{bmatrix}
            0 & 1 \\
            1 & 0
        \end{bmatrix}
    }
    \qquad
    \boxed{
        Y =
        \begin{bmatrix}
            0 & -i \\
            i & 0
        \end{bmatrix}
    }
    \qquad
    \boxed{
        Z =
        \begin{bmatrix}
            1 & 0 \\
            0 & -1
        \end{bmatrix}
    }
\end{aligned}$$

They have the following effect on $$\Ket{\psi}$$.
Note that $$X$$ is equivalent to the classical $$\mathrm{NOT}$$ gate
(and is often given that name),
and $$Z$$ is sometimes called the **phase-flip gate**:

$$\begin{aligned}
    X \Ket{\psi}
    = \begin{bmatrix} \beta \\ \alpha \end{bmatrix}
    \qquad
    Y \Ket{\psi}
    = \begin{bmatrix} -i \beta \\ i \alpha \end{bmatrix}
    \qquad
    Z \Ket{\psi}
    = \begin{bmatrix} \alpha \\ -\beta \end{bmatrix}
\end{aligned}$$

In fact, $$Z$$ is a specific case of the **phase shift gate** $$R_\phi$$,
which modifies the qubit's phase without changing its amplitudes.
For an angle $$\phi$$, it is given by:

$$\begin{aligned}
    \boxed{
        R_\phi =
        \begin{bmatrix}
            1 & 0 \\
            0 & e^{i \phi}
        \end{bmatrix}
    }
\end{aligned}$$

For $$\phi = \pi$$, we recover the Pauli-$$Z$$ gate.
In general, the action of $$R_\phi$$ is as follows:

$$\begin{aligned}
    R_\phi \Ket{\psi}
    = \begin{bmatrix} \alpha \\ e^{i \phi} \beta \end{bmatrix}
\end{aligned}$$

Two common special cases of $$R_\phi$$
are $$\phi = \pi/2$$ and $$\phi = \pi/4$$,
respectively called $$S$$ and $$T$$:

$$\begin{aligned}
    \boxed{
        S = R_{\pi/2} =
        \begin{bmatrix}
            1 & 0 \\
            0 & i
        \end{bmatrix}
    }
    \qquad \quad
    \boxed{
        T = R_{\pi/4} =
        \frac{1}{\sqrt{2}}
        \begin{bmatrix}
            \sqrt{2} & 0 \\
            0 & 1 + i
        \end{bmatrix}
    }
\end{aligned}$$

Finally, we have the **Hadamard gate** $$H$$,
which is defined as follows:

$$\begin{aligned}
    \boxed{
        H = \frac{1}{\sqrt{2}}
        \begin{bmatrix}
            1 & 1 \\
            1 & -1
        \end{bmatrix}
    }
\end{aligned}$$

Its action consists of rotating the qubit
by $$\pi$$ around the axis $$(X + Z) / \sqrt{2}$$ of the Bloch sphere:

$$\begin{aligned}
    H \Ket{\psi}
    = \frac{1}{\sqrt{2}} \begin{bmatrix} \alpha + \beta \\ \alpha - \beta \end{bmatrix}
\end{aligned}$$

Notably, it maps the eigenstates of $$X$$ and $$Z$$ to each other,
and is its own inverse (i.e. unitary):

$$\begin{aligned}
    H \Ket{0} = \Ket{+}
    \qquad
    H \Ket{1} = \Ket{-}
    \qquad
    H \Ket{+} = \Ket{0}
    \qquad
    H \Ket{-} = \Ket{1}
\end{aligned}$$

The **Clifford gates** are a set including $$X$$, $$Y$$, $$Z$$, $$H$$ and $$S$$,
or more generally any gates that rotate
by multiples of $$\pi/2$$ around the Bloch sphere.
This set is **not universal**, meaning that if we start from $$\Ket{0}$$,
we can only reach $$\Ket{0}$$, $$\Ket{1}$$, $$\Ket{+}$$, $$\Ket{-}$$, $$\Ket{+i}$$ $$\Ket{-i}$$ using these gates.

If we add *any* non-Clifford gate, for example $$T$$,
then we can reach any point on the Bloch sphere,
which means that the set is **universal**.

However, there is a problem: a qubit has an uncountable infinity of states,
but a quantum circuit consists of a countably infinite sequence of gates, at most.
Therefore, technically, we can never reach the whole Bloch sphere,
but we *can* come up with circuits that approximate a target state to some degree $$\varepsilon$$.
This is the definition of universality:
any state can be approximated.



## Two-qubit gates

As an example, let us consider
the following two pure one-qubit states $$\Ket{\psi_1}$$ and $$\Ket{\psi_2}$$:

$$\begin{aligned}
    \Ket{\psi_1}
    = \alpha_1 \Ket{0} + \beta_1 \Ket{1}
    = \begin{bmatrix} \alpha_1 \\ \beta_1 \end{bmatrix}
    \qquad \quad
    \Ket{\psi_2}
    = \alpha_2 \Ket{0} + \beta_2 \Ket{1}
    = \begin{bmatrix} \alpha_2 \\ \beta_2 \end{bmatrix}
\end{aligned}$$

The composite state of both qubits, assuming they are pure,
is then their tensor product $$\otimes$$:

$$\begin{aligned}
    \Ket{\psi_1 \psi_2}
    = \Ket{\psi_1} \otimes \Ket{\psi_2}
    &= \alpha_1 \alpha_2 \Ket{00} + \alpha_1 \beta_2 \Ket{01} + \beta_1 \alpha_2 \Ket{10} + \beta_1 \beta_2 \Ket{11}
    \\
    &= c_{00} \Ket{00} + c_{01} \Ket{01} + c_{10} \Ket{10} + c_{11} \Ket{11}
\end{aligned}$$

Note that a two-qubit system may be [entangled](/know/concept/quantum-entanglement/),
in which case the coefficients $$c_{00}$$ etc. cannot be written as products,
i.e. $$\Ket{\psi_2}$$ cannot be expressed separately from $$\Ket{\psi_1}$$, and vice versa.

In other words, the general action of a two-qubit quantum gate
can be expressed in the basis of $$\Ket{00}$$, $$\Ket{01}$$, $$\Ket{10}$$ and $$\Ket{11}$$,
but not always in the basis of $$\Ket{0}_1$$, $$\Ket{1}_1$$, $$\Ket{0}_2$$ and $$\Ket{1}_2$$.

With that said, the first two-qubit gate is $$\mathrm{SWAP}$$,
which simply swaps $$\Ket{\psi_1}$$ and $$\Ket{\psi_2}$$:

{% include image.html file="swap.png" width="22%" alt="SWAP gate diagram" %}

$$\begin{aligned}
    \boxed{
        \mathrm{SWAP} =
        \begin{bmatrix}
            1 & 0 & 0 & 0 \\
            0 & 0 & 1 & 0 \\
            0 & 1 & 0 & 0 \\
            0 & 0 & 0 & 1
        \end{bmatrix}
    }
\end{aligned}$$

This matrix is given in the basis of $$\Ket{00}$$, $$\Ket{01}$$, $$\Ket{10}$$ and $$\Ket{11}$$.
Note that $$\mathrm{SWAP}$$ cannot generate entanglement,
so if its input is separable, its output is too.
In any case, its effect is clear:

$$\begin{aligned}
    \mathrm{SWAP} \Ket{\psi_1 \psi_2}
    &= c_{00} \Ket{00} + c_{10} \Ket{01} + c_{01} \Ket{10} + c_{11} \Ket{11}
\end{aligned}$$

Next, there is the **controlled NOT gate** $$\mathrm{CNOT}$$,
which "flips" (applies $$X$$ to) $$\Ket{\psi_2}$$ if $$\Ket{\psi_1}$$ is true:

{% include image.html file="cnot.png" width="22%" alt="CNOT gate diagram" %}

$$\begin{aligned}
    \boxed{
        \mathrm{CNOT} =
        \begin{bmatrix}
            1 & 0 & 0 & 0 \\
            0 & 1 & 0 & 0 \\
            0 & 0 & 0 & 1 \\
            0 & 0 & 1 & 0
        \end{bmatrix}
    }
\end{aligned}$$

That is, it swaps the last two coefficients $$c_{10}$$ and $$c_{11}$$ in the composite state vector:

$$\begin{aligned}
    \mathrm{CNOT} \Ket{\psi_1 \psi_2}
    &= c_{00} \Ket{00} + c_{01} \Ket{01} + c_{11} \Ket{10} + c_{10} \Ket{11}
\end{aligned}$$

More generally, from every one-qubit gate $$U$$,
we can define a two-qubit **controlled U gate** $$\mathrm{CU}$$,
which applies $$U$$ to $$\Ket{\psi_2}$$ if $$\Ket{\psi_1}$$ is true:

{% include image.html file="cu.png" width="22%" alt="CU gate diagram" %}

$$\begin{aligned}
    \boxed{
        \mathrm{CU} =
        \begin{bmatrix}
            1 & 0 & 0 & 0 \\
            0 & 1 & 0 & 0 \\
            0 & 0 & u_{00} & u_{01} \\
            0 & 0 & u_{10} & u_{11}
        \end{bmatrix}
    }
\end{aligned}$$

Where the lower-right 2x2 block is simply $$U$$.
The general action of this gate is given by:

$$\begin{aligned}
    \mathrm{CU} \Ket{\psi_1 \psi_2}
    &= c_{00} \Ket{00} + c_{01} \Ket{01} + (c_{10} u_{00} + c_{11} u_{01}) \Ket{10} + (c_{10} u_{10} + c_{11} u_{11}) \Ket{11}
\end{aligned}$$

A set of gates is **universal** if all possible mappings
from $$n$$ to $$n$$ qubits can be approximated using only these gates.
A minimal universal set is $$\{\mathrm{CNOT}, T, S\}$$,
and there exist many others.


## References
1.  J.S. Neergaard-Nielsen,
    *Quantum information: lectures notes*,
    2021, unpublished.
2.  S. Aaronson,
    *Introduction to quantum information science: lecture notes*,
    2018, unpublished.