1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
---
title: "Rutherford scattering"
sort_title: "Rutherford scattering"
date: 2021-10-02
categories:
- Physics
- Plasma physics
layout: "concept"
---
**Rutherford scattering** or **Coulomb scattering**
is an [elastic pseudo-collision](/know/concept/elastic-collision/)
of two electrically charged particles.
It is not a true collision, and is caused by Coulomb repulsion.
The general idea is illustrated below.
Consider two particles 1 and 2, with the same charge sign.
Let 2 be initially at rest, and 1 approach it with velocity $$\vb{v}_1$$.
Coulomb repulsion causes 1 to deflect by an angle $$\theta$$,
and pushes 2 away in the process:
{% include image.html file="two-body-full.png" width="50%"
alt="Two-body repulsive 'collision'" %}
Here, $$b$$ is called the **impact parameter**.
Intuitively, we expect $$\theta$$ to be larger for smaller $$b$$.
By combining Coulomb's law with Newton's laws,
these particles' equations of motion are found to be as follows,
where $$r = |\vb{r}_1 - \vb{r}_2|$$ is the distance between 1 and 2:
$$\begin{aligned}
m_1 \dv{\vb{v}_1}{t}
= \vb{F}_1
= \frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{\vb{r}_1 - \vb{r}_2}{r^3}
\qquad \quad
m_2 \dv{\vb{v}_2}{t}
= \vb{F}_2
= - \vb{F}_1
\end{aligned}$$
Using the [reduced mass](/know/concept/reduced-mass/)
$$\mu \equiv m_1 m_2 / (m_1 \!+\! m_2)$$,
we turn this into a one-body problem:
$$\begin{aligned}
\mu \dv{\vb{v}}{t}
= \frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{\vb{r}}{r^3}
\end{aligned}$$
Where $$\vb{v} \equiv \vb{v}_1 \!-\! \vb{v}_2$$ is the relative velocity,
and $$\vb{r} \equiv \vb{r}_1 \!-\! \vb{r}_2$$ is the relative position.
The latter is as follows in
[cylindrical polar coordinates](/know/concept/cylindrical-polar-coordinates/)
$$(r, \varphi, z)$$:
$$\begin{aligned}
\vb{r}
= r \cos{\varphi} \:\vu{e}_x + r \sin{\varphi} \:\vu{e}_y + z \:\vu{e}_z
= r \:\vu{e}_r + z \:\vu{e}_z
\end{aligned}$$
These new coordinates are sketched below,
where the origin represents $$\vb{r}_1 = \vb{r}_2$$.
Crucially, note the symmetry:
if the "collision" occurs at $$t = 0$$,
then by comparing $$t > 0$$ and $$t < 0$$
we can see that $$v_x$$ is unchanged for any given $$\pm t$$,
while $$v_y$$ simply changes sign:
{% include image.html file="one-body-full.png" width="60%"
alt="Equivalent one-body deflection" %}
From our expression for $$\vb{r}$$,
we can find $$\vb{v}$$ by differentiating with respect to time:
$$\begin{aligned}
\vb{v}
&= \big( r' \cos{\varphi} - r \varphi' \sin{\varphi} \big) \:\vu{e}_x
+ \big( r' \sin{\varphi} + r \varphi' \cos{\varphi} \big) \:\vu{e}_y + z' \:\vu{e}_z
\\
&= r' \: \big( \cos{\varphi} \:\vu{e}_x + \sin{\varphi} \:\vu{e}_y \big)
+ r \varphi' \: \big( \!-\! \sin{\varphi} \:\vu{e}_x + \cos{\varphi} \:\vu{e}_y \big) + z' \:\vu{e}_z
\\
&= r' \:\vu{e}_r + r \varphi' \:\vu{e}_\varphi + z' \:\vu{e}_z
\end{aligned}$$
Where we have recognized the basis vectors $$\vu{e}_r$$ and $$\vu{e}_\varphi$$.
If we choose the coordinate system such that all dynamics are in the $$(x,y)$$-plane,
i.e. $$z(t) = 0$$, we have:
$$\begin{aligned}
\vb{r}
= r \: \vu{e}_r
\qquad \qquad
\vb{v}
= r' \:\vu{e}_r + r \varphi' \:\vu{e}_\varphi
\end{aligned}$$
Consequently, the angular momentum $$\vb{L}$$ is as follows,
pointing purely in the $$z$$-direction:
$$\begin{aligned}
\vb{L}(t)
= \mu \vb{r} \cross \vb{v}
= \mu \big( r \vu{e}_r \cross r \varphi' \vu{e}_\varphi \big)
= \mu r^2 \varphi' \:\vu{e}_z
\end{aligned}$$
Now, from the figure above,
we can argue geometrically that at infinity $$t = \pm \infty$$,
the ratio $$b/r$$ is related to the angle $$\chi$$ between $$\vb{v}$$ and $$\vb{r}$$ like so:
$$\begin{aligned}
\frac{b}{r(\pm \infty)}
= \sin{\chi(\pm \infty)}
\qquad \quad
\chi(t)
\equiv \measuredangle(\vb{r}, \vb{v})
\end{aligned}$$
With this, we can rewrite
the magnitude of the angular momentum $$\vb{L}$$ as follows,
where the total velocity $$|\vb{v}|$$ is a constant,
thanks to conservation of energy:
$$\begin{aligned}
\big| \vb{L}(\pm \infty) \big|
= \mu \big| \vb{r} \cross \vb{v} \big|
= \mu r |\vb{v}| \sin{\chi}
= \mu b |\vb{v}|
\end{aligned}$$
However, conveniently,
angular momentum is also conserved, i.e. $$\vb{L}$$ is constant in time:
$$\begin{aligned}
\vb{L}'(t)
&= \mu \big( \vb{r} \cross \vb{v}' + \vb{v} \cross \vb{v} \big)
= \vb{r} \cross (\mu \vb{v}')
= \vb{r} \cross \Big( \frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{\vb{r}}{r^3} \Big)
= 0
\end{aligned}$$
Where we have replaced $$\mu \vb{v}'$$ with the equation of motion.
Thanks to this, we can equate the two preceding expressions for $$\vb{L}$$,
leading to the relation below.
Note the appearance of a new minus,
because the sketch shows that $$\varphi' < 0$$,
i.e. $$\varphi$$ decreases with increasing $$t$$:
$$\begin{aligned}
- \mu r^2 \dv{\varphi}{t}
= \mu b |\vb{v}|
\quad \implies \quad
\dd{t}
= - \frac{r^2}{b |\vb{v}|} \dd{\varphi}
\end{aligned}$$
Now, at last, we turn to the main equation of motion.
Its $$y$$-component is given by:
$$\begin{aligned}
\mu \dv{v_y}{t}
= \frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{y}{r^3}
\quad \implies \quad
\mu \dd{v_y}
= \frac{q_1 q_2}{4 \pi \varepsilon_0} \frac{y}{r^3} \dd{t}
\end{aligned}$$
We replace $$\dd{t}$$ with our earlier relation,
and recognize geometrically that $$y/r = \sin{\varphi}$$:
$$\begin{aligned}
\mu \dd{v_y}
= - \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}|} \frac{y}{r} \dd{\varphi}
= - \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}|} \sin{\varphi} \dd{\varphi}
= \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}|} \dd{(\cos{\varphi})}
\end{aligned}$$
Integrating this from the initial state $$i$$ at $$t = -\infty$$
to the final state $$f$$ at $$t = \infty$$ yields:
$$\begin{aligned}
\Delta v_y
\equiv \int_{i}^{f} \dd{v_y}
= \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}| \mu} \big( \cos{\varphi_f} - \cos{\varphi_i} \big)
\end{aligned}$$
From symmetry, we see that $$\varphi_i = \pi \!-\! \varphi_f$$,
and that $$\Delta v_y = v_{y,f} \!-\! v_{y,i} = 2 v_{y,f}$$, such that:
$$\begin{aligned}
2 v_{y,f}
= \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}| \mu} \big( \cos{\varphi_f} - \cos(\pi \!-\! \varphi_f) \big)
= \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}| \mu} \big( 2 \cos{\varphi_f} \big)
\end{aligned}$$
Furthermore, geometrically, at $$t = \infty$$
we notice that $$v_{y,f} = |\vb{v}| \sin{\varphi_f}$$,
leading to:
$$\begin{aligned}
2 |\vb{v}| \sin{\varphi_f}
= \frac{q_1 q_2}{2 \pi \varepsilon_0 b |\vb{v}| \mu} \cos{\varphi_f}
\end{aligned}$$
Rearranging this yields the following equation
for the final polar angle $$\varphi_f \equiv \varphi(\infty)$$:
$$\begin{aligned}
\tan{\varphi_f}
= \frac{\sin{\varphi_f}}{\cos{\varphi_f}}
= \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}|^2 \mu}
\end{aligned}$$
However, we want $$\theta$$, not $$\varphi_f$$.
One last use of symmetry and geometry
tells us that $$\theta = 2 \varphi_f$$,
and we thus arrive at the celebrated **Rutherford scattering formula**:
$$\begin{aligned}
\boxed{
\tan\!\Big( \frac{\theta}{2} \Big)
= \frac{q_1 q_2}{4 \pi \varepsilon_0 b |\vb{v}|^2 \mu}
}
\end{aligned}$$
In fact, this formula is also valid if $$q_1$$ and $$q_2$$ have opposite signs;
in that case particle 2 is simply located on the other side
of particle 1's trajectory.
## References
1. P.M. Bellan,
*Fundamentals of plasma physics*,
1st edition, Cambridge.
2. M. Salewski, A.H. Nielsen,
*Plasma physics: lecture notes*,
2021, unpublished.
|