summaryrefslogtreecommitdiff
path: root/source/know/concept/sokhotski-plemelj-theorem/index.md
blob: 66e89bc737ab0c7e3da667dc278337b1fcb7fd88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
title: "Sokhotski-Plemelj theorem"
sort_title: "Sokhotski-Plemelj theorem"
date: 2021-11-01
categories:
- Mathematics
- Complex analysis
- Quantum mechanics
layout: "concept"
---

The goal is to evaluate integrals of the following form, where $$a < 0 < b$$,
and $$f(x)$$ is assumed to be continuous in the integration interval $$[a, b]$$:

$$\begin{aligned}
    \lim_{\eta \to 0^+} \int_a^b \frac{f(x)}{x + i \eta} \dd{x}
\end{aligned}$$

To do so, we start by splitting the integrand
into its real and imaginary parts (limit hidden):

$$\begin{aligned}
    \int_a^b \frac{f(x)}{x + i \eta} \dd{x}
    &= \int_a^b \frac{x - i \eta}{x^2 + \eta^2} f(x) \dd{x}
    = \int_a^b \bigg( \frac{x}{x^2 + \eta^2} - i \frac{\eta}{x^2 + \eta^2} \bigg) f(x) \dd{x}
\end{aligned}$$

To evaluate the real part,
we notice that for $$\eta \to 0^+$$ the integrand diverges for $$x \to 0$$,
and thus split the integral as follows:

$$\begin{aligned}
    \lim_{\eta \to 0^+} \int_a^b \frac{x f(x)}{x^2 + \eta^2} \dd{x}
    &= \lim_{\eta \to 0^+} \bigg( \int_a^{-\eta} \frac{x f(x)}{x^2 + \eta^2} \dd{x} + \int_\eta^b \frac{x f(x)}{x^2 + \eta^2} \dd{x} \bigg)
\end{aligned}$$

This is simply the definition of the
[Cauchy principal value](/know/concept/cauchy-principal-value/) $$\mathcal{P}$$,
so the real part is given by:

$$\begin{aligned}
    \lim_{\eta \to 0^+} \int_a^b \frac{x f(x)}{x^2 + \eta^2} \dd{x}
    &= \mathcal{P} \int_a^b \frac{x f(x)}{x^2} \dd{x}
    = \mathcal{P} \int_a^b \frac{f(x)}{x} \dd{x}
\end{aligned}$$

Meanwhile, in the imaginary part,
we substitute $$\eta$$ for $$1 / m$$, and introduce $$\pi$$:

$$\begin{aligned}
    \lim_{\eta \to 0^+} \int_a^b \frac{\eta \: f(x)}{x^2 + \eta^2} \dd{x}
    &= \lim_{m \to +\infty} \frac{\pi}{\pi} \int_a^b \frac{1/m}{x^2 + 1/m^2} f(x) \dd{x}
    \\
    &= \lim_{m \to +\infty} \frac{\pi}{\pi} \int_a^b \frac{m}{1 + m^2 x^2} f(x) \dd{x}
\end{aligned}$$

The expression $$m / \pi (1 + m^2 x^2)$$ is a so-called *nascent delta function*,
meaning that in the limit $$m \to +\infty$$ it converges to
the [Dirac delta function](/know/concept/dirac-delta-function/):

$$\begin{aligned}
    \lim_{\eta \to 0^+} \int_a^b \frac{\eta \: f(x)}{x^2 + \eta^2} \dd{x}
    &= \pi \int_a^b \delta(x) \: f(x) \dd{x}
    = \pi f(0)
\end{aligned}$$

By combining the real and imaginary parts,
we thus arrive at the (real version of the)
so-called **Sokhotski-Plemelj theorem** of complex analysis:

$$\begin{aligned}
    \boxed{
        \lim_{\eta \to 0^+} \int_a^b \frac{f(x)}{x + i \eta} \dd{x}
        = \mathcal{P} \int_a^b \frac{f(x)}{x} \dd{x} - i \pi f(0)
    }
\end{aligned}$$

However, this theorem is often written in the following sloppy way,
where $$\eta$$ is defined up front to be small,
the integral is hidden, and $$f(x)$$ is set to $$1$$.
This awkwardly leaves $$\mathcal{P}$$ behind:

$$\begin{aligned}
    \frac{1}{x + i \eta}
    = \mathcal{P} \Big( \frac{1}{x} \Big) - i \pi \delta(x)
\end{aligned}$$

The full, complex version of the Sokhotski-Plemelj theorem
evaluates integrals of the following form
over a contour $$C$$ in the complex plane:

$$\begin{aligned}
    \phi(z) = \frac{1}{2 \pi i} \oint_C \frac{f(\zeta)}{\zeta - z} \dd{\zeta}
\end{aligned}$$

Where $$f(z)$$ must be [holomorphic](/know/concept/holomorphic-function/).
The Sokhotski-Plemelj theorem then states:

$$\begin{aligned}
    \boxed{
        \lim_{w \to z} \phi(w)
        = \frac{1}{2 \pi i} \mathcal{P} \oint_C \frac{f(\zeta)}{\zeta - z} \dd{\zeta} \pm \frac{f(z)}{2}
    }
\end{aligned}$$

Where the sign is positive if $$z$$ is inside $$C$$, and negative if it is outside.
The real version follows by letting $$C$$ follow the whole real axis,
making $$C$$ an infinitely large semicircle,
so that the integrand vanishes away from the real axis,
because $$1 / (\zeta \!-\! z) \to 0$$ for $$|\zeta| \to \infty$$.