summaryrefslogtreecommitdiff
path: root/source/know/concept/time-evolution-operator/index.md
blob: f489ac6ddc9d5a36dbe97a86026889c1f85c569e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
title: "Time evolution operator"
sort_title: "Time evolution operator"
date: 2024-10-15
categories:
- Quantum mechanics
- Physics
layout: "concept"
---

In general, given a system whose governing equation is known,
the **time evolution operator** $$\hat{U}(t, t_0)$$
transforms the state at time $$t_0$$ to the one at time $$t$$.
Although not specific to it,
this is most often used in quantum mechanics,
as governed by the Schrödinger equation:

$$\begin{aligned}
    i \hbar \dv{}{t} \ket{\psi(t)}
    = \hat{H}(t) \ket{\psi(t)}
\end{aligned}$$

Such that the definition of $$\hat{U}(t)$$ is as follows,
where we have set $$t_0 = 0$$:

$$\begin{aligned}
    \ket{\psi(t)}
    = \hat{U}(t) \ket{\psi(0)}
\end{aligned}$$

Clearly, $$\hat{U}(t)$$ must be unitary.
The goal is to find an expression that satisfies this relation.



## Time-independent Hamiltonian

We start by inserting the definition of $$\hat{U}(t)$$
into the Schrödinger equation:

$$\begin{aligned}
    \dv{}{t} \hat{U}(t) \ket{\psi(0)}
    = - \frac{i}{\hbar} \hat{H} \: \hat{U}(t) \ket{\psi(0)}
\end{aligned}$$

If we hide the state $$\ket{\psi(0)}$$,
then $$\hat{U}(t)$$ can be said to satisfy the equation in its own right:

$$\begin{aligned}
    \dv{}{t} \hat{U}(t)
    = - \frac{i}{\hbar} \hat{H} \: \hat{U}(t)
\end{aligned}$$

If the Hamiltonian $$\hat{H}$$ is time-independent,
this is straightforward to integrate, yielding:

$$\begin{aligned}
    \boxed{
        \hat{U}(t)
        = \exp\!\bigg( \!-\! \frac{i}{\hbar} t \hat{H} \bigg)
    }
\end{aligned}$$

And the generalization to $$t_0 \neq 0$$ is trivial,
since we can just shift the time axis:

$$\begin{aligned}
    \hat{U}(t, t_0)
    = \exp\!\bigg( \!-\! \frac{i}{\hbar} (t - t_0) \hat{H} \bigg)
\end{aligned}$$



## Time-dependent Hamiltonian

Even when $$\hat{H}$$ is time-dependent,
$$\hat{U}(t)$$ can be said to satisfy the Schrödinger equation:

$$\begin{aligned}
    \dv{}{t} \hat{U}(t)
    = - \frac{i}{\hbar} \hat{H}(t) \: \hat{U}(t)
\end{aligned}$$

Integrating from $$0$$ to $$t$$,
and using $$\hat{U}(0) = 1$$ (which should be clear from its definition):

$$\begin{aligned}
    \hat{U}(t)
    = 1 + \frac{1}{i \hbar} \int_0^t \hat{H}(\tau_1) \: \hat{U}(\tau_1) \dd{\tau_1}
\end{aligned}$$

This is a self-consistent equation for $$\hat{U}(t)$$.
We can recursively insert it into itself, yielding:

$$\begin{aligned}
    \hat{U}(t)
    &= 1 + \frac{1}{i \hbar} \int_0^t \hat{H}(\tau_1)
    \bigg( 1 + \frac{1}{i \hbar} \int_0^{\tau_1} \hat{H}(\tau_2) \: \hat{U}(\tau_2) \dd{\tau_2} \bigg) \dd{\tau_1}
    \\
    &= 1 + \frac{1}{i \hbar} \int_0^t \hat{H}(\tau_1) \dd{\tau_1}
    + \frac{1}{(i \hbar)^2} \int_0^t \hat{H}(\tau_1) \int_0^{\tau_1} \hat{H}(\tau_2) \: \hat{U}(\tau_2) \dd{\tau_2} \dd{\tau_1}
    \\
    &= 1 + \frac{1}{i \hbar} \int_0^t \hat{H}(\tau_1) \dd{\tau_1}
    + \frac{1}{(i \hbar)^2} \int_0^t \hat{H}(\tau_1) \int_0^{\tau_1} \hat{H}(\tau_2) \dd{\tau_2} \dd{\tau_1}
    + \frac{1}{(i \hbar)^3} \int_0^t \cdots \: \dd{\tau_1}
\end{aligned}$$

And so on.
Let us take a closer look at the third (i.e. second-order) term in this series,
noting that the integrals are ordered such that $$\tau_2 < \tau_1$$ always.
We can exploit this fact to introduce several
[Heaviside step functions](/know/concept/heaviside-step-function/) $$\Theta(t)$$:

$$\begin{aligned}
    &\quad \int_0^t \hat{H}(\tau_1) \int_0^{\tau_1} \hat{H}(\tau_2) \dd{\tau_2} \dd{\tau_1}
    \\
    &= \frac{1}{2} \int_0^t \hat{H}(\tau_1) \int_0^{\tau_1} \hat{H}(\tau_2) \dd{\tau_2} \dd{\tau_1}
    + \frac{1}{2} \int_0^t \hat{H}(\tau_2) \int_0^{\tau_2} \hat{H}(\tau_1) \dd{\tau_1} \dd{\tau_2}
    \\
    &= \frac{1}{2} \int_0^t \! \hat{H}(\tau_1)
    \int_0^{\tau_1} \! \Theta(\tau_1 \!-\! \tau_2) \hat{H}(\tau_2) \dd{\tau_2} \dd{\tau_1}
    + \frac{1}{2} \int_0^t \! \hat{H}(\tau_2)
    \int_0^{\tau_2} \! \Theta(\tau_2 \!-\! \tau_1) \hat{H}(\tau_1) \dd{\tau_1} \dd{\tau_2}
    \\
    &= \frac{1}{2} \int_0^t \int_0^t
    \bigg( \Theta(\tau_1 \!-\! \tau_2) \: \hat{H}(\tau_1) \: \hat{H}(\tau_2)
    + \Theta(\tau_2 \!-\! \tau_1) \: \hat{H}(\tau_1) \: \hat{H}(\tau_2) \bigg) \dd{\tau_1} \dd{\tau_2}
    \\
    &= \frac{1}{2} \int_0^t \int_0^t \mathcal{T} \Big\{ \hat{H}(\tau_1) \: \hat{H}(\tau_2) \Big\} \dd{\tau_1} \dd{\tau_2}
\end{aligned}$$

Where we have recognized the
[time-ordering meta-operator](/know/concept/time-ordered-product/) $$\mathcal{T}$$.
The above procedure is easy to generalize to the higher-order terms,
so we arrive at the following expression for $$\hat{U}(t)$$:

$$\begin{aligned}
    \hat{U}(t)
    &= 1 + \frac{1}{i \hbar} \int_0^t \hat{H}(\tau_1) \dd{\tau_1}
    + \frac{1}{2} \frac{1}{(i \hbar)^2} \iint_0^t \mathcal{T} \Big\{ \hat{H}(\tau_1) \: \hat{H}(\tau_2) \Big\} \dd{\tau_2} \dd{\tau_1}
    \\
    &\qquad+ \frac{1}{6} \frac{1}{(i \hbar)^3} \iiint_0^t
    \mathcal{T} \Big\{ \hat{H}(\tau_1) \: \hat{H}(\tau_2) \: \hat{H}(\tau_3) \Big\} \dd{\tau_3} \dd{\tau_2} \dd{\tau_1}
    + \: ...
    \\
    &= 1 + \sum_{n = 1}^\infty \frac{1}{n!} \frac{1}{(i \hbar)^n} \int_0^t \!\cdots\! \int_0^t
    \mathcal{T} \Big\{ \hat{H}(\tau_1) \cdots \hat{H}(\tau_n) \Big\} \dd{\tau_n} \cdots \dd{\tau_1}
\end{aligned}$$

This result is sometimes called a **Dyson series**.
Convention allows us to write it as follows,
despite such a use of $$\mathcal{T}$$ looking a bit strange:

$$\begin{aligned}
    \hat{U}(t)
    &= 1 + \sum_{n = 1}^\infty \frac{1}{n!} \frac{1}{(i \hbar)^n}
    \mathcal{T} \bigg\{ \bigg( \int_0^t \hat{H}(\tau) \dd{\tau} \bigg)^n \bigg\}
\end{aligned}$$

Here, we recognize the Taylor expansion of $$\exp(x)$$,
leading us to the desired result:

$$\begin{aligned}
    \boxed{
        \hat{U}(t)
        = \mathcal{T} \bigg\{ \exp\!\bigg( \!-\! \frac{i}{\hbar} \int_0^t \hat{H}(\tau) \dd{\tau} \bigg) \bigg\}
    }
\end{aligned}$$

Where once again $$\mathcal{T}$$ is being used according to convention.
Finally, the time axis can be shifted arbitrarily,
so many authors write the evolution operator from $$t_0$$ to $$t$$ as $$\hat{U}(t, t_0)$$:

$$\begin{aligned}
    \hat{U}(t, t_0)
    = \mathcal{T} \bigg\{ \exp\!\bigg( \!-\! \frac{i}{\hbar} \int_{t_0}^t \hat{H}(\tau) \dd{\tau} \bigg) \bigg\}
\end{aligned}$$



## References
1.  H. Bruus, K. Flensberg,
    *Many-body quantum theory in condensed matter physics*,
    2016, Oxford.