summaryrefslogtreecommitdiff
path: root/latex
diff options
context:
space:
mode:
authorPrefetch2021-02-20 20:12:29 +0100
committerPrefetch2021-02-20 20:12:29 +0100
commit92a86d01c4837901fa433158294a9ce23cbfcefa (patch)
tree741a8096a6ddfea73f6b2fb38d86d457e28380b8 /latex
parenta121b6e4affdf4e4ad26d179fbf2f6b8c6070b11 (diff)
Fix "Pauli exclusion principle"
Diffstat (limited to 'latex')
-rw-r--r--latex/know/concept/pauli-exclusion-principle/source.md32
1 files changed, 16 insertions, 16 deletions
diff --git a/latex/know/concept/pauli-exclusion-principle/source.md b/latex/know/concept/pauli-exclusion-principle/source.md
index 0a35869..e9e4d42 100644
--- a/latex/know/concept/pauli-exclusion-principle/source.md
+++ b/latex/know/concept/pauli-exclusion-principle/source.md
@@ -7,24 +7,24 @@ In quantum mechanics, the *Pauli exclusion principle* is a theorem that
has profound consequences for how the world works.
Suppose we have a composite state
-$\ket*{x_1}\!\ket*{x_2} = \ket*{x_1} \otimes \ket*{x_2}$, where the two
-identical particles $x_1$ and $x_2$ each have the same two allowed
+$\ket*{x_1}\ket*{x_2} = \ket*{x_1} \otimes \ket*{x_2}$, where the two
+identical particles $x_1$ and $x_2$ each can occupy the same two allowed
states $a$ and $b$. We then define the permutation operator $\hat{P}$ as
follows:
$$\begin{aligned}
- \hat{P} \ket{a}\!\ket{b} = \ket{b}\!\ket{a}
+ \hat{P} \ket{a}\ket{b} = \ket{b}\ket{a}
\end{aligned}$$
That is, it swaps the states of the particles. Obviously, swapping the
states twice simply gives the original configuration again, so:
$$\begin{aligned}
- \hat{P}^2 \ket{a}\!\ket{b} = \ket{a}\!\ket{b}
+ \hat{P}^2 \ket{a}\ket{b} = \ket{a}\ket{b}
\end{aligned}$$
-Therefore, $\ket{a}\!\ket{b}$ is an eigenvector of $\hat{P}^2$ with
-eigenvalue $1$. Since $[\hat{P}, \hat{P}^2] = 0$, $\ket{a}\!\ket{b}$
+Therefore, $\ket{a}\ket{b}$ is an eigenvector of $\hat{P}^2$ with
+eigenvalue $1$. Since $[\hat{P}, \hat{P}^2] = 0$, $\ket{a}\ket{b}$
must also be an eigenket of $\hat{P}$ with eigenvalue $\lambda$,
satisfying $\lambda^2 = 1$, so we know that $\lambda = 1$ or
$\lambda = -1$.
@@ -38,14 +38,14 @@ define $\hat{P}_f$ with $\lambda = -1$ and $\hat{P}_b$ with
$\lambda = 1$, such that:
$$\begin{aligned}
- \hat{P}_f \ket{a}\!\ket{b} = \ket{b}\!\ket{a} = - \ket{a}\!\ket{b}
+ \hat{P}_f \ket{a}\ket{b} = \ket{b}\ket{a} = - \ket{a}\ket{b}
\qquad
- \hat{P}_b \ket{a}\!\ket{b} = \ket{b}\!\ket{a} = \ket{a}\!\ket{b}
+ \hat{P}_b \ket{a}\ket{b} = \ket{b}\ket{a} = \ket{a}\ket{b}
\end{aligned}$$
Another fundamental fact of nature is that identical particles cannot be
distinguished by any observation. Therefore it is impossible to tell
-apart $\ket{a}\!\ket{b}$ and the permuted state $\ket{b}\!\ket{a}$,
+apart $\ket{a}\ket{b}$ and the permuted state $\ket{b}\ket{a}$,
regardless of the eigenvalue $\lambda$. There is no physical difference!
But this does not mean that $\hat{P}$ is useless: despite not having any
@@ -55,7 +55,7 @@ where $\alpha$ and $\beta$ are unknown:
$$\begin{aligned}
\ket{\Psi(a, b)}
- = \alpha \ket{a}\!\ket{b} + \beta \ket{b}\!\ket{a}
+ = \alpha \ket{a}\ket{b} + \beta \ket{b}\ket{a}
\end{aligned}$$
When we apply $\hat{P}$, we can "choose" between two "intepretations" of
@@ -64,10 +64,10 @@ equal, the right-hand sides must be equal too:
$$\begin{aligned}
\hat{P} \ket{\Psi(a, b)}
- &= \lambda \alpha \ket{a}\!\ket{b} + \lambda \beta \ket{b}\!\ket{a}
+ &= \lambda \alpha \ket{a}\ket{b} + \lambda \beta \ket{b}\ket{a}
\\
\hat{P} \ket{\Psi(a, b)}
- = \alpha \ket{b}\!\ket{a} + \beta \ket{a}\!\ket{b}
+ &= \alpha \ket{b}\ket{a} + \beta \ket{a}\ket{b}
\end{aligned}$$
This gives us the equations $\lambda \alpha = \beta$ and
@@ -76,7 +76,7 @@ that $\lambda$ can be either $-1$ or $1$. In any case, for bosons
($\lambda = 1$), we thus find that $\alpha = \beta$:
$$\begin{aligned}
- \ket{\Psi(a, b)}_b = C \big( \ket{a}\!\ket{b} + \ket{b}\!\ket{a} \!\big)
+ \ket{\Psi(a, b)}_b = C \big( \ket{a}\ket{b} + \ket{b}\ket{a} \big)
\end{aligned}$$
Where $C$ is a normalization constant. As expected, this state is
@@ -84,7 +84,7 @@ Where $C$ is a normalization constant. As expected, this state is
fermions ($\lambda = -1$), we find that $\alpha = -\beta$:
$$\begin{aligned}
- \ket{\Psi(a, b)}_f = C \big( \ket{a}\!\ket{b} - \ket{b}\!\ket{a} \!\big)
+ \ket{\Psi(a, b)}_f = C \big( \ket{a}\ket{b} - \ket{b}\ket{a} \big)
\end{aligned}$$
This state called *antisymmetric* under exchange: switching $a$ and $b$
@@ -95,14 +95,14 @@ For bosons, we just need to update the normalization constant $C$:
$$\begin{aligned}
\ket{\Psi(a, a)}_b
- = C \ket{a}\!\ket{a}
+ = C \ket{a}\ket{a}
\end{aligned}$$
However, for fermions, the state is unnormalizable and thus unphysical:
$$\begin{aligned}
\ket{\Psi(a, a)}_f
- = C \big( \ket{a}\!\ket{a} - \ket{a}\!\ket{a} \!\big)
+ = C \big( \ket{a}\ket{a} - \ket{a}\ket{a} \big)
= 0
\end{aligned}$$