summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--content/know/category/mathematics.md3
-rw-r--r--content/know/category/physics.md3
-rw-r--r--content/know/concept/index.md3
-rw-r--r--latex/know/concept/dirac-delta-function/source.md12
-rw-r--r--latex/know/concept/fourier-transform/source.md109
5 files changed, 124 insertions, 6 deletions
diff --git a/content/know/category/mathematics.md b/content/know/category/mathematics.md
index e873d90..76106f2 100644
--- a/content/know/category/mathematics.md
+++ b/content/know/category/mathematics.md
@@ -8,3 +8,6 @@ Alphabetical list of concepts in this category.
## D
* [Dirac delta function](/know/concept/dirac-delta-function/)
+
+## F
+* [Fourier transform](/know/concept/fourier-transform/)
diff --git a/content/know/category/physics.md b/content/know/category/physics.md
index 8bcba4d..ff6b4e8 100644
--- a/content/know/category/physics.md
+++ b/content/know/category/physics.md
@@ -9,6 +9,9 @@ Alphabetical list of concepts in this category.
## B
* [Bloch's theorem](/know/concept/blochs-theorem/)
+## F
+* [Fourier transform](/know/concept/fourier-transform/)
+
## D
* [Dirac delta function](/know/concept/dirac-delta-function/)
* [Dirac notation](/know/concept/dirac-notation/)
diff --git a/content/know/concept/index.md b/content/know/concept/index.md
index 697c622..84df249 100644
--- a/content/know/concept/index.md
+++ b/content/know/concept/index.md
@@ -13,6 +13,9 @@ Alphabetical list of concepts in this knowledge base.
* [Dirac delta function](/know/concept/dirac-delta-function/)
* [Dirac notation](/know/concept/dirac-notation/)
+## F
+* [Fourier transform](/know/concept/fourier-transform/)
+
## P
* [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/)
* [Probability current](/know/concept/probability-current/)
diff --git a/latex/know/concept/dirac-delta-function/source.md b/latex/know/concept/dirac-delta-function/source.md
index 478efb4..cb98c41 100644
--- a/latex/know/concept/dirac-delta-function/source.md
+++ b/latex/know/concept/dirac-delta-function/source.md
@@ -48,7 +48,7 @@ $$\begin{aligned}
\delta(x)
%= \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\}
= \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k}
- \propto \hat{\mathcal{F}}\{1\}
+ \:\:\propto\:\: \hat{\mathcal{F}}\{1\}
}
\end{aligned}$$
@@ -79,12 +79,12 @@ $$\begin{aligned}
}
\end{aligned}$$
-*__Proof.__ Be careful about which variable is used for the
-differentiation:*
+*__Proof.__ Note which variable is used for the
+differentiation, and that $\delta'(x - \xi) = - \delta'(\xi - x)$:*
$$\begin{aligned}
- \int f(\xi) \: \frac{d\delta(x - \xi)}{dx} \dd{\xi}
- &= \frac{d}{dx} \int f(\xi) \: \delta(x - \xi) \dd{x}
+ \int f(\xi) \: \dv{\delta(x - \xi)}{x} \dd{\xi}
+ &= \dv{x} \int f(\xi) \: \delta(x - \xi) \dd{x}
= f'(x)
\end{aligned}$$
@@ -94,6 +94,6 @@ This property also generalizes nicely for the higher-order derivatives:
$$\begin{aligned}
\boxed{
- \int f(\xi) \: \frac{d^n \delta(x - \xi)}{dx^n} \dd{\xi} = \dv[n]{f(x)}{x}
+ \int f(\xi) \: \dv[n]{\delta(x - \xi)}{x} \dd{\xi} = \dv[n]{f(x)}{x}
}
\end{aligned}$$
diff --git a/latex/know/concept/fourier-transform/source.md b/latex/know/concept/fourier-transform/source.md
new file mode 100644
index 0000000..58830df
--- /dev/null
+++ b/latex/know/concept/fourier-transform/source.md
@@ -0,0 +1,109 @@
+% Fourier transform
+
+
+# Fourier transform
+
+The **Fourier transform** (FT) is an integral transform which converts a
+function $f(x)$ into its frequency representation $\tilde{f}(k)$.
+Great volumes have already been written about this subject,
+so let us focus on the aspects that are useful to physicists.
+
+The **forward** FT is defined as follows, where $A$, $B$, and $s$ are unspecified constants
+(for now):
+
+$$\begin{aligned}
+ \boxed{
+ \tilde{f}(k)
+ = \hat{\mathcal{F}}\{f(x)\}
+ = A \int_{-\infty}^\infty f(x) \exp(i s k x) \dd{x}
+ }
+\end{aligned}$$
+
+The **inverse Fourier transform** (iFT) undoes the forward FT operation:
+
+$$\begin{aligned}
+ \boxed{
+ f(x)
+ = \hat{\mathcal{F}}^{-1}\{\tilde{f}(k)\}
+ = B \int_{-\infty}^\infty \tilde{f}(k) \exp(- i s k x) \dd{k}
+ }
+\end{aligned}$$
+
+Clearly, the inverse FT of the forward FT of $f(x)$ must equal $f(x)$
+again. Let us verify this, by rearranging the integrals to get the
+[Dirac delta function](/know/concept/dirac-delta-function/) $\delta(x)$:
+
+$$\begin{aligned}
+ \hat{\mathcal{F}}^{-1}\{\hat{\mathcal{F}}\{f(x)\}\}
+ &= A B \int_{-\infty}^\infty \exp(-i s k x) \int_{-\infty}^\infty f(x') \exp(i s k x') \dd{x'} \dd{k}
+ \\
+ &= 2 \pi A B \int_{-\infty}^\infty f(x') \Big(\frac{1}{2\pi} \int_{-\infty}^\infty \exp(i s k (x' - x)) \dd{k} \Big) \dd{x'}
+ \\
+ &= 2 \pi A B \int_{-\infty}^\infty f(x') \: \delta(s(x' - x)) \dd{x'}
+ = \frac{2 \pi A B}{|s|} f(x)
+\end{aligned}$$
+
+Therefore, the constants $A$, $B$, and $s$ are subject to the following
+constraint:
+
+$$\begin{aligned}
+ \boxed{\frac{2\pi A B}{|s|} = 1}
+\end{aligned}$$
+
+But that still gives a lot of freedom. The exact choices of $A$ and $B$
+are generally motivated by the convolution theorem and Parseval's
+theorem.
+
+The choice of $|s|$ depends on whether the frequency variable $k$
+represents the angular ($|s| = 1$) or the physical ($|s| = 2\pi$)
+frequency. The sign of $s$ is not so important, but is generally based
+on whether the analysis is for forward ($s > 0$) or backward-propagating
+($s < 0$) waves.
+
+
+## Derivatives
+
+The FT of a derivative has a very interesting property, let us take a
+look. Below, after integrating by parts, we remove the boundary term by
+assuming that $f(x)$ is localized, i.e. $f(x) \to 0$ for
+$x \to \pm \infty$:
+
+$$\begin{aligned}
+ \hat{\mathcal{F}}\{f'(x)\}
+ &= A \int_{-\infty}^\infty f'(x) \exp(i s k x) \dd{x}
+ \\
+ &= A \big[ f(x) \exp(i s k x) \big]_{-\infty}^\infty - i s k A \int_{-\infty}^\infty f(x) \exp(i s k x) \dd{x}
+ \\
+ &= (- i s k) \tilde{f}(k)
+ \qedhere
+\end{aligned}$$
+
+Therefore, as long as $f(x)$ is localized, the FT eliminates derivatives
+of the transformed variable, which makes it useful against PDEs:
+
+$$\begin{aligned}
+ \boxed{
+ \hat{\mathcal{F}}\{f'(x)\} = (- i s k) \tilde{f}(k)
+ }
+\end{aligned}$$
+
+This generalizes to higher-order derivatives, as long as these
+derivatives are also localized in the $x$-domain, which is practically
+guaranteed if $f(x)$ itself is localized:
+
+$$\begin{aligned}
+ \boxed{
+ \hat{\mathcal{F}} \Big\{ \dv[n]{f}{x} \Big\}
+ = (- i s k)^n \tilde{f}(k)
+ }
+\end{aligned}$$
+
+Derivatives in the frequency domain have an analogous property:
+
+$$\begin{aligned}
+ \boxed{
+ \dv[n]{\tilde{f}}{k}
+ = A \int_{-\infty}^\infty (i s x)^n f(x) \exp(i s k x) \dd{x}
+ = \hat{\mathcal{F}}\{ (i s x)^n f(x) \}
+ }
+\end{aligned}$$