summaryrefslogtreecommitdiff
path: root/static/know/concept/blochs-theorem
diff options
context:
space:
mode:
Diffstat (limited to 'static/know/concept/blochs-theorem')
-rw-r--r--static/know/concept/blochs-theorem/index.html103
1 files changed, 0 insertions, 103 deletions
diff --git a/static/know/concept/blochs-theorem/index.html b/static/know/concept/blochs-theorem/index.html
deleted file mode 100644
index f977739..0000000
--- a/static/know/concept/blochs-theorem/index.html
+++ /dev/null
@@ -1,103 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
-<head>
- <meta charset="utf-8" />
- <meta name="generator" content="pandoc" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
- <title>Prefetch | Bloch’s theorem</title>
- <link rel="icon" href="data:,">
- <style>
- body {
- background:#ddd;
- color:#222;
- max-width:80ch;
- text-align:justify;
- margin:auto;
- padding:1em 0;
- font-family:sans-serif;
- line-height:1.3;
- }
- a {text-decoration:none;color:#00f;}
- h1,h2,h3 {text-align:center}
- h1 {font-size:200%;}
- h2 {font-size:160%;}
- h3 {font-size:120%;}
- .nav {height:3rem;font-size:250%;}
- .nav a:link,a:visited {color:#222;}
- .nav a:hover,a:focus,a:active {color:#00f;}
- .navl {width:30%;float:left;text-align:left;}
- .navr {width:70%;float:left;text-align:right;}
- pre {filter:invert(100%);}
- @media (prefers-color-scheme: dark) {
- body {background:#222;filter:invert(100%);}
- } </style>
- <script>
- MathJax = {
- loader: {load: ["[tex]/physics"]},
- tex: {packages: {"[+]": ["physics"]}}
- };
- </script>
- <script src="/mathjax/tex-svg.js" type="text/javascript"></script>
- </head>
-<body>
-<div class="nav">
-<div class="navl"><a href="/">PREFETCH</a></div>
-<div class="navr">
-<a href="/blog/">blog</a>&emsp;
-<a href="/code/">code</a>&emsp;
-<a href="/know/">know</a>
-</div>
-</div>
-<hr>
-<h1 id="blochs-theorem">Bloch’s theorem</h1>
-<p>In quantum mechanics, <em>Bloch’s theorem</em> states that, given a potential <span class="math inline">\(V(\vec{r})\)</span> which is periodic on a lattice, i.e. <span class="math inline">\(V(\vec{r}) = V(\vec{r} + \vec{a})\)</span> for a primitive lattice vector <span class="math inline">\(\vec{a}\)</span>, then it follows that the solutions <span class="math inline">\(\psi(\vec{r})\)</span> to the time-independent Schrödinger equation take the following form, where the function <span class="math inline">\(u(\vec{r})\)</span> is periodic on the same lattice, i.e. <span class="math inline">\(u(\vec{r}) = u(\vec{r} + \vec{a})\)</span>:</p>
-<p><span class="math display">\[
-\begin{aligned}
- \boxed{
- \psi(\vec{r}) = u(\vec{r}) e^{i \vec{k} \cdot \vec{r}}
- }
-\end{aligned}
-\]</span></p>
-<p>In other words, in a periodic potential, the solutions are simply plane waves with a periodic modulation, known as <em>Bloch functions</em> or <em>Bloch states</em>.</p>
-<p>This is suprisingly easy to prove: if the Hamiltonian <span class="math inline">\(\hat{H}\)</span> is lattice-periodic, then it will commute with the unitary translation operator <span class="math inline">\(\hat{T}(\vec{a})\)</span>, i.e. <span class="math inline">\([\hat{H}, \hat{T}(\vec{a})] = 0\)</span>. Therefore <span class="math inline">\(\hat{H}\)</span> and <span class="math inline">\(\hat{T}(\vec{a})\)</span> must share eigenstates <span class="math inline">\(\psi(\vec{r})\)</span>:</p>
-<p><span class="math display">\[
-\begin{aligned}
- \hat{H} \:\psi(\vec{r}) = E \:\psi(\vec{r})
- \qquad
- \hat{T}(\vec{a}) \:\psi(\vec{r}) = \tau \:\psi(\vec{r})
-\end{aligned}
-\]</span></p>
-<p>Since <span class="math inline">\(\hat{T}\)</span> is unitary, its eigenvalues <span class="math inline">\(\tau\)</span> must have the form <span class="math inline">\(e^{i \theta}\)</span>, with <span class="math inline">\(\theta\)</span> real. Therefore a translation by <span class="math inline">\(\vec{a}\)</span> causes a phase shift, for some vector <span class="math inline">\(\vec{k}\)</span>:</p>
-<p><span class="math display">\[
-\begin{aligned}
- \psi(\vec{r} + \vec{a})
- = \hat{T}(\vec{a}) \:\psi(\vec{r})
- = e^{i \theta} \:\psi(\vec{r})
- = e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r})
-\end{aligned}
-\]</span></p>
-<p>Let us now define the following function, keeping our arbitrary choice of <span class="math inline">\(\vec{k}\)</span>:</p>
-<p><span class="math display">\[
-\begin{aligned}
- u(\vec{r})
- = e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r})
-\end{aligned}
-\]</span></p>
-<p>As it turns out, this function is guaranteed to be lattice-periodic for any <span class="math inline">\(\vec{k}\)</span>:</p>
-<p><span class="math display">\[
-\begin{aligned}
- u(\vec{r} + \vec{a})
- &amp;= e^{- i \vec{k} \cdot (\vec{r} + \vec{a})} \:\psi(\vec{r} + \vec{a})
- \\
- &amp;= e^{- i \vec{k} \cdot \vec{r}} e^{- i \vec{k} \cdot \vec{a}} e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r})
- \\
- &amp;= e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r})
- \\
- &amp;= u(\vec{r})
-\end{aligned}
-\]</span></p>
-<p>Then Bloch’s theorem follows from isolating the definition of <span class="math inline">\(u(\vec{r})\)</span> for <span class="math inline">\(\psi(\vec{r})\)</span>.</p>
-<hr>
-&copy; &quot;Prefetch&quot;. Licensed under <a href="https://creativecommons.org/licenses/by-sa/4.0/">CC BY-SA 4.0</a>.
-</body>
-</html>