summaryrefslogtreecommitdiff
path: root/static/know/concept/dirac-notation
diff options
context:
space:
mode:
Diffstat (limited to 'static/know/concept/dirac-notation')
-rw-r--r--static/know/concept/dirac-notation/index.html137
1 files changed, 0 insertions, 137 deletions
diff --git a/static/know/concept/dirac-notation/index.html b/static/know/concept/dirac-notation/index.html
deleted file mode 100644
index 5da8c1b..0000000
--- a/static/know/concept/dirac-notation/index.html
+++ /dev/null
@@ -1,137 +0,0 @@
-<!DOCTYPE html>
-<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
-<head>
- <meta charset="utf-8" />
- <meta name="generator" content="pandoc" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
- <title>Prefetch | Dirac notation</title>
- <link rel="icon" href="data:,">
- <style>
- body {
- background:#ddd;
- color:#222;
- max-width:80ch;
- text-align:justify;
- margin:auto;
- padding:1em 0;
- font-family:sans-serif;
- line-height:1.3;
- }
- a {text-decoration:none;color:#00f;}
- h1,h2,h3 {text-align:center}
- h1 {font-size:200%;}
- h2 {font-size:160%;}
- h3 {font-size:120%;}
- .nav {height:3rem;font-size:250%;}
- .nav a:link,a:visited {color:#222;}
- .nav a:hover,a:focus,a:active {color:#00f;}
- .navl {width:30%;float:left;text-align:left;}
- .navr {width:70%;float:left;text-align:right;}
- pre {filter:invert(100%);}
- @media (prefers-color-scheme: dark) {
- body {background:#222;filter:invert(100%);}
- } </style>
- <script>
- MathJax = {
- loader: {load: ["[tex]/physics"]},
- tex: {packages: {"[+]": ["physics"]}}
- };
- </script>
- <script src="/mathjax/tex-svg.js" type="text/javascript"></script>
- </head>
-<body>
-<div class="nav">
-<div class="navl"><a href="/">PREFETCH</a></div>
-<div class="navr">
-<a href="/blog/">blog</a>&emsp;
-<a href="/code/">code</a>&emsp;
-<a href="/know/">know</a>
-</div>
-</div>
-<hr>
-<h1 id="dirac-notation">Dirac notation</h1>
-<p><em>Dirac notation</em> is a notation to do calculations in a Hilbert space without needing to worry about the space’s representation. It is basically the <em>lingua franca</em> of quantum mechanics.</p>
-<p>In Dirac notation there are <em>kets</em> <span class="math inline">\(\ket{V}\)</span> from the Hilbert space <span class="math inline">\(\mathbb{H}\)</span> and <em>bras</em> <span class="math inline">\(\bra{V}\)</span> from a dual <span class="math inline">\(\mathbb{H}&#39;\)</span> of the former. Crucially, the bras and kets are from different Hilbert spaces and therefore cannot be added, but every bra has a corresponding ket and vice versa.</p>
-<p>Bras and kets can only be combined in two ways: the <em>inner product</em> <span class="math inline">\(\braket{V}{W}\)</span>, which returns a scalar, and the <em>outer product</em> <span class="math inline">\(\ket{V} \bra{W}\)</span>, which returns a mapping <span class="math inline">\(\hat{L}\)</span> from kets <span class="math inline">\(\ket{V}\)</span> to other kets <span class="math inline">\(\ket{V&#39;}\)</span>, i.e. a linear operator. Recall that the Hilbert inner product must satisfy:</p>
-<p><span class="math display">\[\begin{aligned}
- \braket{V}{W} = \braket{W}{V}^*
-\end{aligned}\]</span></p>
-<p>So far, nothing has been said about the actual representation of bras or kets. If we represent kets as <span class="math inline">\(N\)</span>-dimensional columns vectors, the corresponding bras are given by the kets’ adjoints, i.e. their transpose conjugates:</p>
-<p><span class="math display">\[\begin{aligned}
- \ket{V} =
- \begin{bmatrix}
- v_1 \\ \vdots \\ v_N
- \end{bmatrix}
- \quad \implies \quad
- \bra{V} =
- \begin{bmatrix}
- v_1^* &amp; \cdots &amp; v_N^*
- \end{bmatrix}
-\end{aligned}\]</span></p>
-<p>The inner product <span class="math inline">\(\braket{V}{W}\)</span> is then just the familiar dot product <span class="math inline">\(V \cdot W\)</span>:</p>
-<p><span class="math display">\[\begin{gathered}
- \braket{V}{W}
- =
- \begin{bmatrix}
- v_1^* &amp; \cdots &amp; v_N^*
- \end{bmatrix}
- \cdot
- \begin{bmatrix}
- w_1 \\ \vdots \\ w_N
- \end{bmatrix}
- = v_1^* w_1 + ... + v_N^* w_N
-\end{gathered}\]</span></p>
-<p>Meanwhile, the outer product <span class="math inline">\(\ket{V} \bra{W}\)</span> creates an <span class="math inline">\(N \cross N\)</span> matrix:</p>
-<p><span class="math display">\[\begin{gathered}
- \ket{V} \bra{W}
- =
- \begin{bmatrix}
- v_1 \\ \vdots \\ v_N
- \end{bmatrix}
- \cdot
- \begin{bmatrix}
- w_1^* &amp; \cdots &amp; w_N^*
- \end{bmatrix}
- =
- \begin{bmatrix}
- v_1 w_1^* &amp; \cdots &amp; v_1 w_N^* \\
- \vdots &amp; \ddots &amp; \vdots \\
- v_N w_1^* &amp; \cdots &amp; v_N w_N^*
- \end{bmatrix}
-\end{gathered}\]</span></p>
-<p>If the kets are instead represented by functions <span class="math inline">\(f(x)\)</span> of <span class="math inline">\(x \in [a, b]\)</span>, then the bras represent <em>functionals</em> <span class="math inline">\(F[u(x)]\)</span> which take an unknown function <span class="math inline">\(u(x)\)</span> as an argument and turn it into a scalar using integration:</p>
-<p><span class="math display">\[\begin{aligned}
- \ket{f} = f(x)
- \quad \implies \quad
- \bra{f}
- = F[u(x)]
- = \int_a^b f^*(x) \: u(x) \dd{x}
-\end{aligned}\]</span></p>
-<p>Consequently, the inner product is simply the following familiar integral:</p>
-<p><span class="math display">\[\begin{gathered}
- \braket{f}{g}
- = F[g(x)]
- = \int_a^b f^*(x) \: g(x) \dd{x}
-\end{gathered}\]</span></p>
-<p>However, the outer product becomes something rather abstract:</p>
-<p><span class="math display">\[\begin{gathered}
- \ket{f} \bra{g}
- = f(x) \: G[u(x)]
- = f(x) \int_a^b g^*(\xi) \: u(\xi) \dd{\xi}
-\end{gathered}\]</span></p>
-<p>This result makes more sense if we surround it by a bra and a ket:</p>
-<p><span class="math display">\[\begin{aligned}
- \bra{u} \!\Big(\!\ket{f} \bra{g}\!\Big)\! \ket{w}
- &amp;= U\big[f(x) \: G[w(x)]\big]
- = U\Big[ f(x) \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big]
- \\
- &amp;= \int_a^b u^*(x) \: f(x) \: \Big(\int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \dd{x}
- \\
- &amp;= \Big( \int_a^b u^*(x) \: f(x) \dd{x} \Big) \Big( \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big)
- \\
- &amp;= \braket{u}{f} \braket{g}{w}
-\end{aligned}\]</span></p>
-<hr>
-&copy; &quot;Prefetch&quot;. Licensed under <a href="https://creativecommons.org/licenses/by-sa/4.0/">CC BY-SA 4.0</a>.
-</body>
-</html>