diff options
Diffstat (limited to 'static/know')
-rw-r--r-- | static/know/concept/blochs-theorem/index.html | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/static/know/concept/blochs-theorem/index.html b/static/know/concept/blochs-theorem/index.html index 26e3480..58a934e 100644 --- a/static/know/concept/blochs-theorem/index.html +++ b/static/know/concept/blochs-theorem/index.html @@ -49,7 +49,7 @@ <hr> <h1 id="blochs-theorem">Bloch’s theorem</h1> -<p>In quantum mechanics, <em>Bloch’s theorem</em> states that, given a potential <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">V(\vec{r})</annotation></semantics></math> which is periodic on a lattice, i.e. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo><mo>=</mo><mi>V</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo>+</mo><mover><mi>a</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">V(\vec{r}) = V(\vec{r} + \vec{a})</annotation></semantics></math> for a primitive lattice vector <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mover><mi>a</mi><mo accent="true">⃗</mo></mover><annotation encoding="application/x-tex">\vec{a}</annotation></semantics></math>, then it follows that the solutions <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ψ</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">\psi(\vec{r})</annotation></semantics></math> to the time-independent <a href="/know/page/schroedinger-equation">Schrödinger equation</a> take the following form, where the function <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">u(\vec{r})</annotation></semantics></math> is periodic on the same lattice, i.e. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo><mo>=</mo><mi>u</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo>+</mo><mover><mi>a</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">u(\vec{r}) = u(\vec{r} + \vec{a})</annotation></semantics></math>:</p> +<p>In quantum mechanics, <em>Bloch’s theorem</em> states that, given a potential <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">V(\vec{r})</annotation></semantics></math> which is periodic on a lattice, i.e. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo><mo>=</mo><mi>V</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo>+</mo><mover><mi>a</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">V(\vec{r}) = V(\vec{r} + \vec{a})</annotation></semantics></math> for a primitive lattice vector <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mover><mi>a</mi><mo accent="true">⃗</mo></mover><annotation encoding="application/x-tex">\vec{a}</annotation></semantics></math>, then it follows that the solutions <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ψ</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">\psi(\vec{r})</annotation></semantics></math> to the time-independent Schrödinger equation take the following form, where the function <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">u(\vec{r})</annotation></semantics></math> is periodic on the same lattice, i.e. <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo><mo>=</mo><mi>u</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo>+</mo><mover><mi>a</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo></mrow><annotation encoding="application/x-tex">u(\vec{r}) = u(\vec{r} + \vec{a})</annotation></semantics></math>:</p> <p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right"><menclose notation="box"><mrow><mi>ψ</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo><mo>=</mo><mi>u</mi><mo stretchy="false" form="prefix">(</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover><mo stretchy="false" form="postfix">)</mo><msup><mi>e</mi><mrow><mi>i</mi><mover><mi>k</mi><mo accent="true">⃗</mo></mover><mo>⋅</mo><mover><mi>r</mi><mo accent="true">⃗</mo></mover></mrow></msup></mrow></menclose></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{aligned} \boxed{ |