Categories:
Mathematics,
Physics.
Cartesian coordinates
This article is a supplement to the ones on
orthogonal curvilinear systems,
spherical coordinates,
polar cylindrical coordinates,
and parabolic cylindrical coordinates.
The well-known Cartesian coordinate system (x,y,z)
has trivial scale factors:
hx=hy=hz=1
With these, we can use the standard formulae for orthogonal curvilinear coordinates
to write out various vector calculus operations.
Differential elements
For line integrals,
the tangent vector element dℓ for a curve is as follows:
dℓ=e^xdx+e^ydy+e^zdz
For surface integrals,
the normal vector element dS for a surface is given by:
dS=e^xdydz+e^ydxdz+e^zdxdy
And for volume integrals,
the infinitesimal volume dV takes the following form:
dV=dxdydz
Common operations
The basic vector operations (gradient, divergence, curl and Laplacian) are given by:
∇f=e^x∂x∂f+e^y∂y∂f+ez∂z∂f
∇⋅V=∂x∂Vx+∂y∂Vy+∂z∂Vz
∇×V=e^x(∂y∂Vz−∂z∂Vy)+e^y(∂z∂Vx−∂x∂Vz)+e^z(∂x∂Vy−∂y∂Vx)
∇2f=∂x2∂2f+∂y2∂2f+∂z2∂2f
Uncommon operations
Uncommon operations include:
the gradient of a divergence ∇(∇⋅V),
the gradient of a vector ∇V,
the advection of a vector (U⋅∇)V with respect to U,
the Laplacian of a vector ∇2V,
and the divergence of a 2nd-order tensor ∇⋅T:
∇(∇⋅V)=e^x(∂x2∂2Vx+∂x∂y∂2Vy+∂x∂z∂2Vz)+e^y(∂y∂x∂2Vx+∂y2∂2Vy+∂y∂z∂2Vz)+e^z(∂z∂x∂2Vx+∂z∂y∂2Vy+∂z2∂2Vz)
∇V=e^xe^x∂x∂Vx+e^xe^y∂x∂Vy+e^xe^z∂x∂Vz+e^ye^x∂y∂Vx+e^ye^y∂y∂Vy+e^ye^z∂y∂Vz+e^ze^x∂z∂Vx+e^ze^y∂z∂Vy+e^ze^z∂z∂Vz
(U⋅∇)V=e^x(Ux∂x∂Vx+Uy∂y∂Vx+Uz∂z∂Vx)+e^y(Ux∂x∂Vy+Uy∂y∂Vy+Uz∂z∂Vy)+e^z(Ux∂x∂Vz+Uy∂y∂Vz+Uz∂z∂Vz)
∇2V=e^x(∂x2∂2Vx+∂y2∂2Vx+∂z2∂2Vx)+e^y(∂x2∂2Vy+∂y2∂2Vy+∂z2∂2Vy)+e^z(∂x2∂2Vz+∂y2∂2Vz+∂z2∂2Vz)
∇⋅T=e^x(∂x∂Txx+∂y∂Tyx+∂z∂Tzx)+e^y(∂x∂Txy+∂y∂Tyy+∂z∂Tzy)+e^z(∂x∂Txz+∂y∂Tyz+∂z∂Tzz)
References
- M.L. Boas,
Mathematical methods in the physical sciences, 2nd edition,
Wiley.